МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ
ПОВРЕЖДЕНИЯ КЛЕТОК

Методические разработки
для самостоятельной работы студентов
медицинских ВУЗов

Москва
2009
Министерство здравоохранения Российской Федерации

Российский Государственный Медицинский
Университет

Рекомендуется Учебно-методическим объединением по медицинскому и фармацевтическому образованию Российской федерации в качестве учебного пособия для студентов медицинских ВУЗов

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ
ПОВРЕЖДЕНИЯ КЛЕТОК

Издание 5-е, дополненное

Методические разработки
dля самостоятельной работы студентов медицинских ВУЗов

Под редакцией профессора Г.В.Порядина

Москва
2009

Методические разработки предназначены для работы студентов как в аудиторное, так и во внеаудиторное время, направленной на теоретическое изучение вопросов патогенеза повреждения организма на молекулярном уровне.

Методические разработки составлены в соответствии с утвержденной Минздравом РФ программой по патофизиологии и новым учебным планом для высших медицинских учебных заведений.

Составители: ст. преподаватель В.С. Курмангалиев,
ст. преподаватель Л.Н. Осколок.

Создание оригиналь-макета проф. Ж.М.Салмаси

Под редакцией профессора Г.В. Порядина.

Научный редактор профессор Ж.М. Салмаси

© Российский государственный медицинский университет, 2009
© Коллектив авторов, 2009
<table>
<thead>
<tr>
<th>Сокращение</th>
<th>Обозначение</th>
</tr>
</thead>
<tbody>
<tr>
<td>АДФ</td>
<td>адениндиаминфосфорная кислота</td>
</tr>
<tr>
<td>АМФ</td>
<td>аденинмонофосфорная кислота</td>
</tr>
<tr>
<td>АКТГ</td>
<td>адренокортикотропный гормон</td>
</tr>
<tr>
<td>АН</td>
<td>антиоксидант</td>
</tr>
<tr>
<td>АТФ</td>
<td>аденинтрифосфорная кислота</td>
</tr>
<tr>
<td>АТФ-аза</td>
<td>аденинтрифосфотаза</td>
</tr>
<tr>
<td>ДНК</td>
<td>дезоксирибонуклеиновая кислота</td>
</tr>
<tr>
<td>КрФ</td>
<td>креатинфосфат</td>
</tr>
<tr>
<td>КФК</td>
<td>креатинфосфокиназа</td>
</tr>
<tr>
<td>ЛДГ</td>
<td>лактатдегидрогеназа</td>
</tr>
<tr>
<td>ЛПНП</td>
<td>липопротеиды низкой плотности</td>
</tr>
<tr>
<td>ЛПВП</td>
<td>липопротеиды высокой плотности</td>
</tr>
<tr>
<td>Na⁺/K⁺-АТФаза</td>
<td>Na⁺ /K⁺ -зависимая АТФаза</td>
</tr>
<tr>
<td>Ca²⁺-АТФаза</td>
<td>Ca²⁺ -зависимая АТФаза</td>
</tr>
<tr>
<td>ПОЛ</td>
<td>перекисное окисление липидов</td>
</tr>
<tr>
<td>РНК</td>
<td>рибонуклеиновая кислота</td>
</tr>
<tr>
<td>СЖК</td>
<td>свободные жирные кислоты</td>
</tr>
<tr>
<td>СОД</td>
<td>супероксиддисмутаза</td>
</tr>
<tr>
<td>СР</td>
<td>саркоплазматический ретикулум</td>
</tr>
<tr>
<td>ФЛ</td>
<td>фосфолипиды</td>
</tr>
<tr>
<td>цАМФ</td>
<td>циклический аденинмонофосфат</td>
</tr>
<tr>
<td>цГМФ</td>
<td>циклический гуанозинмонофосфат</td>
</tr>
<tr>
<td>ЭР</td>
<td>эндоплазматический ретикулум</td>
</tr>
</tbody>
</table>
ВВЕДЕНИЕ

1.1. Актуальность темы

Проблема повреждения клеток в становлении и развитии болезни занимает одно из центральных мест в современной патологии. Наряду с традиционными методами изучения признаков повреждения тканей и органов на клеточном и субклеточном уровне в настоящее время широко применяются физико-химические методы исследования функций клеток, что позволило представить проблему повреждения на молекулярном уровне. В практической медицине возникла настоятельная необходимость в изучении показателей повреждения клеток и тканей в целях диагностики, оценки функционального состояния поврежденных органов, особенно в трансплантовологии для оценки жизнеспособности тканей, подлежащих консервированию и пересадке.

1.2. Цель занятия

Изучить причины, проявления и основные механизмы повреждения клетки.

В результате изучения темы студенты должны знать:
1. Определение понятия "повреждение клетки". Основные виды повреждений клетки.
2. Специфические и неспецифические проявления повреждения клетки.
3. Морфологические и функциональные признаки повреждения клетки.
4. Основные механизмы повреждения клетки.
5. Роль кальция в механизмах повреждения клетки.

Студенты должны уметь:
- объяснить патогенез отдельных проявлений повреждения клетки;
- объяснить механизмы повреждения мембран клетки и внутриклеточных структур;
- объяснить возможные нарушения механизмов энергетического обеспечения клеток;
- объяснить механизм ишемического и реперфузионного повреждения клетки;
- объяснить патогенетическую роль ионизированного кальция в механизмах повреждения клеток.

1.3. Основные вопросы, подлежащие разбору.
1.3.1. Определение понятия "повреждения клетки". Виды повреждения клетки.
1.3.2. Специфические и неспецифические проявления повреждения клетки.
1.3.3. Морфологические и функциональные признаки повреждения клетки.
1.3.4. Общие механизмы повреждения клетки.
1.3.5. Роль перекисного окисления липидов в повреждении клетки.
1.3.6. Принципы защиты мембран и ферментов клеток от токсических продуктов перекисного окисления липидов.
1.3.7. Роль чрезмерной активации мембраносвязанных фосфолипаз и гидролаз лизосом в повреждении клетки.
1.3.8. Повреждение мембран клеток активированным комплементом. Механизмы активации комплемента.
1.3.9. Механизмы повреждения клеточных мембран дегергентами.
1.3.10. Повреждение рецепторов клеточных мембран.
1.3.11. Нарушение внутриклеточных механизмов регуляции функции клеток.
1.3.12. Факторы, вызывающие нарушение энергетического обеспечения клеток.
1.3.13. Механизмы ишемического повреждения клетки. Особенности метаболизма и функциональной активности клетки при нарушении ее энергообеспечения.
1.3.14. Механизмы реперфузионного повреждения клетки.
1.3.15. Роль ионизированного кальция в механизмах ишемического и реперфузионного повреждений клетки.
1.3.16. Нарушение механизмов, контролирующих пластическое обеспечение клетки и деятельность ядра.

2. Содержание самостоятельной работы студентов при проработке темы:
"Молекулярные механизмы повреждения клеток".

2.1. Вопросы на проверку исходного уровня знаний студентов (выживаемости базовых знаний)
2.1.1. Строение цитоплазматической мембраны. Общие функциональные свойства биологических мембран.
2.1.2. Способы транспорта веществ через цитоплазматическую мембрану.
2.1.3. Факторы, влияющие на проницаемость мембраны клетки.
2.1.4. Роль биологического насоса.
2.1.5. Строение основных органелл клетки и их функции (эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, микротрубочки и микрофиламенты, ядро, ядрышко).
2.1.6. Классификация белков клетки по функциональному признаку.
2.1.7. Роль углеводов и липидов в нормальной жизнедеятельности клетки.
2.1.8. Элементарный химический состав живых клеток.
2.2. Изучите информационный материал и рекомендуемую литературу, ориентируясь на основные вопросы по данной теме.
2.3. Для проверки и самоконтроля знаний, полученных при подготовке, оцените свои знания на I и II уровнях усвоения, ответив на вопросы (см. приложение).
2.4. Подготовьте вопросы для выяснения у преподавателя.
3. Информационный материал.
Повреждение клетки - нарушение внутриклеточного гомеостаза, которое ограничивает функциональные возможности клеток, угрожает их жизни или сокращает ее продолжительность.

В понятие гомеостаза клетки входят постоянство концентрации водородных ионов, содержания кислорода, электролитов, воды, субстратов для энергетического и пластического обеспечения клетки, ферментов, нуклеотидов и других веществ. Однако постоянство вышеперечисленных параметров не является абсолютным. Эти показатели постоянно меняются, но в условиях "нормы" эти изменения ограничены сравнительно узкими пределами, обеспечивающими наиболее оптимальные условия для жизнедеятельности клетки.

Виды повреждений клетки.
Различают острые и хронические повреждения клеток. В зависимости от степени нарушений внутриклеточного гомеостаза повреждения клеток могут быть обратимыми и необратимыми. В тех случаях, когда нарушения внутриклеточного гомеостаза, вызванные повреждающими агентами, устраняются при мобилизации внеклеточных и внутриклеточных защитных механизмов, повреждение клеток носит обратимый характер. Например, обратимыми могут быть повреждения миокардиоцитов при рефлекторной ишемии миокарда, эритроцитов при кратковременных изменениях осмотического давления крови, клеток кожи при эритеме, вызванной ультрафиолетовыми лучами, эпителия слизистой носа при воздействии пыльцы злаковых трав у больных поллинозами. Если повреждающие агенты вызывают стойкие изменения внутриклеточного гомеостаза, неустойчивые при вовлечении внеклеточных и внутриклеточных защитно-компенсаторных механизмов, развиваются необратимые повреждения клеток, приводящие, как правило, к их гибели или значительному сокращению сроков их жизни. Например, повреждения миокардиоцитов при длительной ишемии миокарда, клеток кожи при действии больших доз ультрафиолетовых лучей, эритроцитов при действии активированного комплемента или гомолитических ядов, эпителия слизистой носа при б- действии вирусов гриппа.

Следует заметить, что необратимые повреждения не всегда приводят к быстрой гибели клеток. Например, отложение в клетках стареющего организма липофусцина, образующегося в результате взаимодействия перекисных радикалов жирных кислот с токоферолом при недостаточности лизосомальных ферментов. При этом жировые клетки приобретают желтый цвет. Отложение в клетках продуктов конденсации гликогена при гликогенозах, мукополисахаридов при муковисцидозе, холестерина при атеросклерозе также не приводят к немедленной гибели клеток, но значительно снижают их функциональную активность и продолжительность жизни.

Когда нарушения гомеостаза поврежденной клетки достигают критического уровня и приводят к необратимым нарушениям неравновесного состояния клетки и окружающей ее среды, наступает гибель клетки. Смерть клетки характеризуется прекращением всех жизненных процессов в ней: обмена веществ, синте-
за белков, активного транспорта электролитов и т.д. Смерть клетки обычно сопровождается саморазрушением - аутолизом (распад клеток и тканей в организме под действием содержащихся в них гидролитических ферментов без помощи бактерий). Однако, в некоторых случаях аутолиз при гибели клетки не развивается. Например, когда смерть организма наступила внезапно, а ткани длительное время находились в условиях низкой температуры (трупы доисторических животных в зоне вечной мерзлоты).

Другим проявлением необратимого повреждения клетки и её гибели является апоптоз.

Апоптоз.

Апоптоз (программированная клеточная гибель) - это форма смерти клеток в результате реализации рецепторно-опосредованных механизмов самоуничтожения клетки. В результате апоптоза происходит удаление, гибель единичных клеток. Этот феномен имеет важное значение в онкологии, иммунологии, эмбриологии, эндокринологии, гематологии и др., являясь способом реализации физиологической гибели клеток.

Термин апоптоз имеет греческое происхождение и переводится как “листо-пад”, “опадение лепестков цветов”, “увядание”.

Необходимо чётко разграничивать понятия некроза и апоптоза. Некроз - патологическая форма гибели клетки, происходящей в результате воздействия на структуры клетки экстремальных факторов: гипоксии, бактериальной и вирусной инфекции, высокой и низкой температуры, радиации и др. Основным механизмом некроза является невосстанавливаемое повреждение клеточной мембраны, сопровождающееся нарушениями её барьерной функции, работы катионных насосов, электролитного баланса, энергетического обмена и функции ядра. Фрагментация цитоплазматической и внутриклеточных мембран, хаотичные разрывы ДНК, высвобождение и активация лизосомальных ферментов приводят к полной дезинтеграции клетки. Содержимое клетки попадает в окружающее тканевое пространство и подвергается фагоцитозу. Некроз распространяется на множество клеток, что ведёт к образованию некротической зоны и развитию воспалительной реакции.

В развитии апоптоза можно выделить три последовательные стадии:
1. ограничение атопических клеток;
2. фрагментация;
3. фагоцитирование фрагментированных клеточных остатков.

На первой стадии, вследствие действия не до конца идентифицированных факторов (“внешней программы” клетки, гормонов, цитокинов, экспрессии протоонкогенов, вирусов, физических и химических агентов и др.). Нарушаются плотные контакты клеток паренхимы и начинается отделение клетки от других живых клеток. Уменьшается объём клетки (уместно напомнить, что при некрозе наблюдается набухание клеток), цитоплазматическая мембрана становится гофрированной, формирует “выросты”. Затем после выделения клетки из массива
паренхимы, начинается конденсация внутриклеточных структур и ядра, что со-провождается активацией специфических ферментов.

Следующая стадия - фрагментация апототических клеток. В отличие от некро-за, при котором происходит аутолиз клеток и разобление всех мембран и обо-ложек, при апоптозе осколки ядер, органеллы формируют своеобразные вакуо-ли, которые не подвержены действию литических ферментов, сохраняют струк-туру и свой химический состав.

Завершающая стадия - фрагменты клеток, образовавшиеся после запрограм-мированной апоптотической гибели, подвергаются фагоцитозу как макрофага-ми, так и окружающими клетками.

В качестве пермиссивного (разрешающего) сигнала, направляющего клетку к апоптотической гибели могут выступать самые различные факторы. Например, в коре надпочечников в течение 24 часов после отмены АКТГ, в предстательной железе в течение 3-х суток после отмены тестостерона, в регрессирующем жёл-том теле яичников, в эндометрии и эпителии молочных желез в конце менстру-ального цикла происходит увеличение апоптотических клеток с характерными морфологическими изменениями.

Апоптозу подвергаются в основном незрелые (эмбриональные, стволовые, опухолевые и др.) клетки. Разрушающий сигнал, воспринятый клеткой, приво-дит к активации специфических ферментов - Ca^{2+}-зависимых эндонуклеаз (ре-стриктаз), которые расщепляют ДНК в строго определённых участках, образуя фрагменты длиной около 200 пар оснований. Для реализации апоптотической гибели клетки важное значение имеет изменение клеточной поверхности, необ-ходимое для распознавания её фагоцитами. Оно осуществляется за счёт появлени-я в гликопroteидах клеточной мембраны N-ацетилглюкозаминовых групп, напоминающих лектины.

Помимо физиологического существует патологический апоптоз, вызываемый теми же причинами, что и некроз, но с меньшей интенсивностью воздействия. Биологический смысл апоптоза заключается в ограничении численности клеток в быстропролиферирующих тканях и изменении структуры органа, например в процессе развития эмбриона.

Проявления повреждения могут быть как специфическими, т.е. характерными только для какого-то конкретного болезнетворного агента, так и неспецифиче-скими.

Примерами специфических проявлений повреждения могут служить иммун-ный гемолиз эритроцитов при наличии в организме специфических антиэритро-цитарных антител, образование радиотоксинов при радиационном поврежде-нии, избирательное торможение отдельных клеточных ферментов при химиче-ском повреждении, например, подавление активности цитохромоксидазы и ста-билизация её иона железа в трехвалентном состоянии при отравлении цианида-ми, угнетение холинэстеразы фосфорглицерическими соединениями.

В то же время, в поврежденных клетках наблюдаются стереотипные неспе-цифические изменения их жизнедеятельности, общие для действия самых раз-
нообразных повреждающих агентов. Примерами неспецифических проявлений повреждений клетки являются угнетение ферментов внешних и внутренних мембран, клеточных "насосов", нарушение энергетического обмена, обмена воды, электролитов, развитие ацидоза, изменение структуры и функции внутриклеточных органелл: митохондрий, лизосом, ЭР и др. В дальнейшем речь будет идти преимущественно о неспецифических проявлениях повреждения, которые условно можно разделить на морфологические и функциональные.

Морфологические признаки повреждения клеток.

Универсальным признаком повреждения клетки является ее набухание, сопровождающееся нарушением контактов со смежными клетками и поддерживающими структурами. Наблюдаются изменения структуры митохондрий, проявляющиеся в их набухании, вакуолизации, потере двухконтурности наружной мембраны, гомогенизации крист. Наблюдаются изменения размеров и формы ядра, маргинация хроматина, разрывы ядерной оболочки. Повреждение ЭР сопровождается расширением каналцев, образованием вакуолей и расширенных цистерн, разрывом мембран каналцев и их фрагментацией. Наблюдаются разрушение полиоси, уменьшение числа рибосом и нарушение их связи с мембранами. Повреждение мембран лизосом сопровождается выходом и активацией лизосомальных ферментов, что ведет к необратимому повреждению внутриклеточных структур и гибели клеток.

Морфологическим выражением нарушения метаболизма клеток является дистрофия. В зависимости от преобладания нарушений того или иного вида обмена различают белковые, жировые, углеводные и минеральные дистрофии. Структурные изменения клеток при различных типах дистрофии подробно описаны в учебниках патологической анатомии.

Функциональные признаки повреждения клеток.

1. Снижение функциональной активности клеток, проявляющееся прежде всего в нарушении специализированных функций клеток. Так при повреждении миокардиоцитов снижается или утрачивается способность к возбуждению и сокращению, повреждение гепатоцитов сопровождается снижением антитоксической, экскреторной и многих других функций, повреждение кроветворных клеток красного костного мозга характеризуется нарушением процессов клеточного деления, повреждение нейтрофилов - снижением их подвижности и фагоцитарной активности.

2. Повышение проницаемости мембран клеток и внутриклеточных структур для макромолекул (белков, коллоидных красителей), соединений с низкой молекулярной массой (аминоциклот, глюкозы, нуклеотидов), а также для ионов. Свидетельством повышения проницаемости клеточных мембран является способность поврежденных клеток окрашиваться витальными красителями (нейтральным красным, трипановым синим), появление в крови цитоплазматических ферментов. Например, при повреждении гепатоцитов происходит освобождение в кровь аминотрансфераз, при повреждении миокардиоцитов - КФК и ЛДГ, что используется для диагностики гепатитов и инфаркта миокарда. Утечка
из клетки пуринов, сопровождаемая повышением их концентрации в крови, также является важным признаком повреждения клеточных мембран.

3. Повреждение клетки передко характеризуется изменением метаболизма с рядом усилением синтеза медиаторов воспаления или ответа острой фазы. Например, тучные клетки, макрофаги и нейтрофилы при аллергической реакции высвобождают лейкотриены, вызывающие сокращение гладкой мускулатуры бронхов; лейкоциты под воздействием бактериальных эндотоксинов выделяют эндогенные пиrogены, вызывающие развитие лихорадочной реакции.

4. Вследствие изменения биохимических процессов в поврежденных клетках наблюдается:
- нарушение синтеза белка;
- уменьшение содержания АТФ и увеличение содержания АДФ, АМФ и неорганического фосфора;
- ацидоз цитоплазмы (первичный ацидоз повреждения);
- утечка калия из клетки и увеличение содержания внеклеточного калия;
- увеличение внутриклеточного содержания ионизированного кальция;
- снижение мембранных потенциала и изменение электрогенныых свойств клеток, что приводит, например, к изменениям электрокардиограммы при повреждении кардиомиоцитов, электроэнцефалограммы при повреждении нейронов;
- увеличение хемиллюминесценции (сверхслабого свечения) вследствие активации ПОЛ мембран;
- гипергидратация, выражающаяся в набухании клетки и являющаяся универсальным признаком повреждения.

Механизмы повреждения клеток

При всем разнообразии причин, вызывающих повреждение клетки, можно выделить наиболее общие механизмы её повреждения:
1. Механизмы повреждения мембран клетки и внутриклеточных структур;
2. Нарушение механизмов, контролирующих энергетическое обеспечение клетки;
3. Нарушение механизмов, контролирующих пластическое обеспечение клетки и деятельность ядра;
4. Механизмы повреждения рецепторного аппарата клетки и внутриклеточных механизмов регуляции её функций.

1. Механизмы повреждения клеточных мембран

В основу представления о структуре большинства биологических мембран положена модель жидкокристаллической (мозаичной) мембраны Сингера-Никольсона (рис.1), хотя, в зависимости от органа и в меньшей степени от вида животного, и структура и функции мембран варьируют. Наибольшую вариабельность имеют плазматические мембраны и мембраны гладкого ЭР. Более однородными являются мембраны митохондрий, лизосом, пероксисом, ядер, имеющие сходную структуру и выполняющие сходные функции, независимо от вида органа.
Основными компонентами мембран являются липиды и белки. Гликопротеиды и гликолипиды, входящие в состав плазматических мембран, осуществляют рецепторную и иммунную функции, межклеточные взаимодействия. Соотношения липидов и белков в различных мембранах варьируют, они расположены ассиметрично и находятся в постоянном движении (рис.1).

Рис.1. Модель мозаичной мембраны и подвижность мембранных белков и липидов (по А.А.Болдыреву)
I- интегральные белки; II- периферические белки; III- липидный бислой; IV-анулярные липиды; 1- вращение белков вокруг оси в плоскости мембраны; 2- латеральная диффузия белков; 3- движение белков внутрь и наружу (флип-флоп, интегральные белки); 4- вращение белков в плоскости, перпендикулярной плоскости мембраны (транспортные, прощивающие белки); 5-выход белка из мембраны; 6- сегментарная подвижность липидов; 7- вращение липидов вокруг собственной оси; 8- латеральная диффузия липидов; 9- флип-флоп переходы липидов; 10- выход липидов из мембран; 11- гликокаликс; 12- депо кальция

Мембранные липиды по подвижности можно разделить на:
1) высокоподвижные жидкие липиды бислоя;
2) ограниченны подвижные (иммобилизованные) липиды анулярного монослоя, фиксированные к белку и входящие в состав монопротеинового комплекса, который включает 22-50 молекул на одну молекулу белка (20-30% от общего количества липидов);
3) малоподвижные (неподвижные) упорядоченные липиды, объединенные в кластеры.

В мембранах саркоплазматического ретикулума, например, эти группы липидов составляют примерно 65, 36 и 2% соответственно.

Подвижность и прочность фиксации белков в липидном слое мембраны зависят от степени их погружения в мембрану, обуславливающей наличие только электростатических (периферических белки) или и электростатических, и гидрофобных (интегральные прощивающие белки) взаимодействий (рис. 1).
В последние годы было установлено, что изменение заряда, конформации и других свойств одного из мембранных компонентов вызывает изменения структуры и функции мембраны в целом.

Получены также доказательства того, что на функции мембранных (особенно липидзависимых) белков существенно влияют следующие показатели состояния мембранных липидов:

1) количественный и качественный состав липидов в связи с их специфическим аллостерическим (активирующим или ингибитирующим) воздействием на белки;

2) полярность, микровязкость (текучесть) и гетерогенность липидного бислоя, зависящие от состава ФЛ, относительного количества холестерина, степени ненасыщенности жирных кислот;

3) наличие в липидном бислое продуктов липидного метаболизма, липазной, фосполипазной, липоксигеназной или перекисной природы, влияющей на гидрофобный объем, микровязкость, образование кластеров и другие показатели физико-химического состояния липидов; а также оказывающих прямое повреждающее действие на пространственную структуру (конформацию) и функциональные свойства мембранных белков.

К мембранным липидзависимым белкам относятся главным образом интегральные белки, выполняющие ферментные, метаболические, транспортные, регуляторные, рецепторные или другие функции. Это Na⁺/K⁺-ATФаза, K⁺-ATФаза, Ca²⁺-ATФаза, аденилатциклаза, цитохромоксидаза и другие ферменты дыхательной цепи митохондрий, глюкозо-6-фосфатаза, пируватоксидаза, цитохром R-450, 5-нуклеотидаза, гексокиназа и др.

На изменение конформационных свойств, и следовательно, на доступность активных центров для субстрата, подвижность, последовательное расположение и возможность образования специализированных полиферментных комплексов и на другие свойства белков особое влияние оказывают изменения свойств аккумулярных липидов, особенно липидов, предпочтительных для данного белка.

Показано, что для Na⁺/K⁺-ATФазы таким предпочтительным липидом является фосфатидилсерин, для ферментов дыхательной цепи митохондрий - кардиоидин и фосфатидилэтаноламин, для аденилатциклазы плазматической мембраны - фосфатидилэозит, для Ca²⁺-ATФазы - лизофосфатидилхолин.

Состав и конформационные свойства белков в свою очередь влияют на состояние мембранных липидов; в частности, экранируя липиды, белки снижают действие на них фосфолипаз, ПОЛ и других патогенных факторов.

Повреждение клеток выражается прежде всего в нарушении строения и функции клеточных мембран, которое может быть обусловлено повреждением их липидных или белковых (ферментных и структурных) компонентов.

Повреждение липидных компонентов клеточных и субклеточных мембран возникает несколькими путями. Важнейшими из них являются:

1.1. интенсификация ПОЛ
1.2. активация мембраносвязанных фосфолипаз и гидролаз лизосом
1.3. повреждение мембран амфифильными соединениями и детерgentами
1.4. растяжение и микроразрывы мембран в результате набухания клеток и их органелл
1.5. повреждающее действие макромолекул и иммунных комплексов.

1.1. Усиление перекисного окисления липидов.

ПОЛ протекает в клетках и в норме. Оно является необходимым звеном таких жизненно важных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и дифференцировка клеток, фагоцитоз, метаболизм катехоламинов и др. ПОЛ участвует в процессах регуляции липидного состава биомембран и, как следствие, активности мембраносвязанных ферментов. Интенсивность ПОЛ регулируется соотношением факторов, активирующих (прооксиданты) и подавляющих (антиоксиданты) этот процесс.

К числу наиболее активных прооксидантов относятся самоокисляющиеся соединения, индуцирующие образование свободных радикалов (нафтохиноны, витамины А и D); восстановители (НАДФН, НАДН, липоевая кислота, низкие концентрации аскорбиновой кислоты); соединения, образующиеся в процессе обмена веществ - свободнорадикальные продукты различного происхождения (эндоперекиси простагландинов, продукты метаболизма лейкотриенов, адреналина), ионы металлов с переменной валентностью (Fe^{2+}, Cu^{2+}, Mn^{2+}, Co^{2+}).

Кальций, являясь универсальным регулятором многих метаболических процессов, способен регулировать и процесс свободнорадикального ПОЛ. При этом ионы кальция (Ca^{2+}) могут не только оказывать на него стимулирующее действие (в области низких концентраций около 10^{-5} М), но и вызывать ингибирующий эффект (при концентрации около 10^{-4} М и выше). В основе стимуляции ПОЛ ионами кальция лежит их способность высвобождать ионы железа (Fe^{2+}), связанные с отрицательно заряженными группами липидов, и тем самым увеличивать концентрацию каталитически активного Fe^{2+} в системе.

К самым мощным факторам, повреждающим клеточные мембраны, относятся свободные радикалы, вызывающие в клетке неконтролируемые реакции. Сущность патогенного действия свободных радикалов заключается в их атомной структуре. Обычно орбитали химических веществ заняты парами электронов с противоположно направленными спинами (спин - собственный момент импульса макрочастицы). У свободных радикалов на внешней орбите располагается один неспаренный электрон.

Основным источником свободных радикалов в организме является кислород. Молекулярный кислород (O_{2}) в основном состоянии имеет два неспаренных электрона с одинаково ориентированными спинами, занимающих самостоятельные внешние орбитали. Каждая из этих орбиталей может принять еще один электрон. Полное восстановление O_{2} до 2H_{2}O требует присоединения четырех электронов:

\[O_{2} + 4e^{-} + 4H^{+} \rightarrow 2H_{2}O \]

Однако в большинстве случаев в организме восстановление кислорода происходит поэтапно, с переносом одного электрона на каждом этапе.
1. \[\text{O}_2 + e^- \rightarrow \text{O}_2^- \] — супероксидный радикал
2. \[\text{O}_2^- + \text{H}^+ \rightarrow \text{HO}_2^- \] — гидропероксидный радикал
3. \[\text{HO}_2^- + e^- + \text{H}^+ \rightarrow \text{H}_2\text{O}_2 \] — перекись водорода
4. \[\text{H}_2\text{O}_2 + e^- \rightarrow \text{OH}^- + \text{OH}^- \] — гидроксильный радикал
5. \[\text{OH}^- + e^- \rightarrow \text{OH}^- \]
6. \[+ \text{OH}^- + \text{H}^+ \rightarrow \text{H}_2\text{O} \]

Присоединение первого электрона образует супероксидный анион \(\text{O}_2^- \), который может действовать как окислитель (акцептор электрона) и как восстановитель (донор электрона). Супероксид способен вступать в цепочку дальнейших превращений в результате последовательных присоединений электронов (если есть доноры) и протонов (в водной среде). Донорами электрона могут быть разнообразные вещества. Супероксид, пероксид водорода, гидроксильный радикал имеют высокую химическую активность и реагируют со многими веществами организма, в том числе с нуклеиновыми кислотами, белками и липидами. Так, активные формы кислорода способны отнимать водород из определенных групп -CH_2- ненасыщенной жирной кислоты, превращая их в свободнорадикальные группы -CH-. Такой радикал жирной кислоты легко присоединяет молекулу O_2 и превращается в пероксидный радикал жирной кислоты:

\[\text{-CH}_2^- + \text{O}_2 \rightarrow \text{-CH}^- + \text{HO}_2^- \quad \text{R-CH}^- + \text{O}_2 \rightarrow \text{R-CH-O-O}^- \]

Пероксидный радикал может отнимать водород от другой молекулы жирной кислоты:

\[\text{RCH-O-O}^- + \text{R-CH}_2 \rightarrow \text{R-CH-O-OH} + \text{R-CH}^- \]

Иначе говоря, возникает цепная реакция. Активные формы кислорода нужны лишь для инициирования цепной реакции, а начавшись она продолжается уже независимо от инициирующих веществ. Пероксиды весьма нестабильны и распадаются с образованием альдегидов. Это происходит путем разрыва в жирной кислоте углерод-углеродной связи, состоящей из пероксидной группы. Таким путем могут окисляться как СЖК, так и остатки жирных кислот в составе других липидов. Этот процесс называют пероксидным окислением липидов.

Особенность цепных реакций состоит в том, что свободные радикалы, реагируя с другими молекулами, не исчезают, а превращаются в другие свободные радикалы. Процесс ПОЛ можно условно разделить на три этапа:
1) инициация: \(\text{R-H} + \text{OH} \rightarrow \text{R}^- + \text{H}_2\text{O} \) — образование алькильного радикала
2) продолжение: \(\text{R}^- + \text{O}_2 \rightarrow \text{RO}_2^- \) — образование пероксидного радикала
3) окончание: не все радикалы продолжают цепь, часть их рекомбинируют друг с другом, давая неактивные продукты:
\(\text{R}^- + \text{R} \rightarrow \text{R-R} \) или \(\text{RO}_2^- + \text{R} \rightarrow \text{ROOR} \)

Помимо спонтанного обрыва цепей, последние могут обрываться антиоксидантами (А), самым распространенным из которых является токоферол (витамин Е). При этом образуются малоактивные радикалы антиоксиданта:
\(\text{AH} + \text{RO}_2^- \rightarrow \text{A}^- + \text{ROOH} \)
A' + RO₂ или (A' + A') → неактивные продукты +hv (хемилюминесцентия)

При взаимодействии перекисных радикалов образуются продукты в электронно-возбужденном состоянии, что сопровождается испусканием квантов света (хемилюминесценцией). Хемилюминесцентный метод позволяет обнаружить свободные радикалы в концентрации до 10 моль/л и может быть использован для определения степени повреждения тканей, предназначенных для трансплантации.

Другим существенным фактором инактивации свободнорадикального окисления липидов являются антиоксидантные ферменты:
1. Супероксиддисмутаза (СОД), комбинирующая 2 супероксидных радикала и превращающая их в перекис водорода и молекулярный кислород.
2. Катализ, превращающая две молекулы перекиси водорода в две молекулы воды и молекулярный кислород.
3. Восстановленный глутатион при взаимодействии с Н₂O₂ под влиянием фермента глутатионпероксидазы образует две молекулы воды и окисленный глутатион.

Следует отметить, что активация ПОЛ может быть не только результатом его прямой интенсификации под влиянием патогенных воздействий, но и следствием первичного подавления антиоксидантных систем клеток.

ПОЛ уменьшает гидрофобность липидов, изменяет их конформацию, приводит к образованию ковалентных сшивок между молекулами липидов или липидов и белков, вызывает повреждение липидных и белковых компонентов мембран, а также мембраносвязанных ферментов. При этом ведущее значение имеют следующие процессы:
1) изменение физико-химических свойств липидной фазы мембран, что в свою очередь обуславливает нарушение конформации липопротеидных комплексов и активности рецепторных белков, трансмембранного переноса ионов и молекул, а также структурной целостности биомембран;
2) прямое повреждение белковых молекул, выполняющих структурную и ферментные функции;
3) образование простейших каналов в результате внедрения гидроперекисей липидов (детергентное действие), что обуславливает неконтролируемый ток катионов, анионов и воды.

Как сейчас установлено, свободнорадикальное окисление липидов играет ведущую роль в развитии УФ-эритемы кожи, световых ожогов глаз, радиационных повреждений, отравления четыреххлористым углеродом. Активация ПОЛ составляет основное звено повреждения миокардиоцитов при ишемической болезни сердца и инфаркте миокарда. Процесс активации полиморфно-ядерных лейкоцитов и макрофагов сопровождается респираторным "взрывом", характеризующимся усилением окислительного метаболизма и высвобождением активных радикалов кислорода. Последние в значительной степени обуславливают бактерицидные свойства фагоцитов, но могут быть токсичными для окружающих тканей и самих клеток.
Принципы защиты мембран и ферментов клеток от токсических продуктов ПОЛ.

Снижение интенсивности ПОЛ можно достигнуть за счет активации механизмов антиоксидантной защиты клеток:
- уменьшение образования инициирующих ПОЛ активных форм кислорода, перекиси водорода, гидроксильных радикалов путем медикаментозной стимуляции усвоения кислорода митохондриями и степени сопряжения окислительно-го фосфорилирования с помощью каротина (ретинола), рибофлавина, антагонистов кальция;
- инактивация свободных радикалов с помощью антиоксидантов (АН) природного происхождения (токоферолы, убихиноны, церулоплазмины, аскорбиновая и никотиновая кислоты) и синтетических препаратов (ионол, 3- и 6-оксипридины, селен-метионин и др.), а также антиоксидных ферментов и тушителей активных форм кислорода (СОД, церулоплазмин, маннитол, этанол, -метионин, альбумин, гистидин);
- уменьшение концентрации в клетках токсических гидроперекисей липидов и других органических и неорганических перекисных соединений (глутатионпероксидаза, каталаза, препараты селена и др.).

Использование препаратов, ингибирующих циклооксигеназный и липокоцигеназный пути метаболизма арахидоновой кислоты, мембраносвязанные фосфолипазы, стабилизаторов мембран, хелаторов и восстановителей металлов переменной валентности.

1.2. Активация мембраносвязанных фосфолипаз и гидролаз лизосом.

Основу липидного бислоя мембран клеток составляют глицирофосфолипиды, представленные фосфатидилхолином, фосфатидилэтаноламином, фосфатидилсерином и др. В норме биохимический состав липидной фазы мембраны в значительной мере регулируется мембраносвязанными фосфолипазами. В поврежденных клетках увеличивается содержание ионизированного кальция и ионов водорода. Активация мембраносвязанных фосфолипаз осуществляется главным образом ионами кальция, а фосфолипаз лизосом - ионами водорода. Чрезмерная активация мембраносвязанных фосфолипаз и гидролаз лизосом (лизаз, фосфолипаз, протеаз) является существенным механизмом повреждения мембран клеток. Это обусловливается гидролизом глицирофосфолипидов клеточных мембран, изменением качественного и количественного состава мембранных ФЛ, делипидизацией мембран, что нарушает их основные физикохимические свойства, а также снижает активность липидзависимых ферментов.

Образующиеся в процессе гидролиза ФЛ и триацилглицеридов продукты (лизофосфолипиды, СЖК, их недокисленные метаболиты и карнитинпроизводные) являются водорастворимыми амфифилами, т.е. имеют в своей структуре и гидрофильную и гидрофобную группы.

В низких концентрациях амфифилы существуют в водных растворах как мономеры, которые способны встраиваться в гидрофобный слой мембраны и, меняя его физико-химические свойства, оказывать мембраностабилизирующее и сни-
жующее проницаемость мембран действие. В высокой концентрации амфифил в водной среде агрегируются в мицеллы и их действие на мембраны практиче-

ски всегда носит повреждающий дегрантоподобный характер. Этот эффект возникает благодаря внедрению мицелл в мембрану, что ведет к разрушению бислоя, "выталкиванию" из него отдельных фосфолипидных молекул или связанных мембраной Ca^{2+}, резкому увеличению проницаемости мембраны (рис.2).

Рис. 2. Механизмы повреждения мембран амфифилами в высоких дозах.

(Lucy A.J.)

1 - внедрение в мембрану; 2 - вытеснение Ca^{2+} из мембраны; 3 - разрыв (повреждение) аннулярных липидов; 4 - изгиб мембраны лизофосфолипидов

По своей форме молекулы ФЛ напоминают сплющенный цилиндр, 1/4 которого по длине гидрофильна (головки), а 3/4 - гидрофобны (жирнокислотные цепи. Окисление одной из жирнокислотных цепей ФЛ при свободнорадикальном окислении или отщепление ее под действием фермента фосфолипазы A приводит к образованию молекулы, у которой размер головки (гидрофильной части) в плоскости мембраны превышает размер гидрофобной части: молекулы по форме ближе не к цилиндрической, а к конической. Такие дефектные молекулы, собираясь вместе, образуют не бислои, а сферические мицеллы. Оказываясь в составе мембран, несколько таких мицелл формируют пору, внутренняя часть которой образована головками, а потому гидрофильна. Через такую пору могут проходить вода и ионы. В результате мембрана теряет свои барьерные свойства.

Рис. 3. Образование мицелл и кластеров при активации ПОЛ и фосфолиполиза.

1.3. Повреждение мембраны амфифильными соединениями и детергентами.
Детергенты - группа амфифильных соединений, способных связываться с мембранным белком гидрофобными связями, одновременно взаимодействуя полярными группами с водой. Свойствами детергентов обладают додецилсульфат натрия, тритоны, лизофосфолипиды, соли жирных кислот, холины. Молекулы детергента сначала разрыхляют мембрану, а при повышении их концентрации образуют сначала смешанные мицеллы, а затем детергент-белковые комплексы (рис.4).

Белок-липид-детергентные комплексы и смешанные мицеллы детергента с ФЛ, обладая большой гидрофильностью, вызывают повышение неселективной проницаемости для ионов и воды.

Рис. 4. Повреждение мембраны детергентами.

К образованию каналов в мембране способны антибиотики трех групп: грамицидины, аламетицин, полиеновые антибиотики (амфотерцин-V). Благодаря амфифильности их молекулы могут встраиваться в мембрану, а с другой стороны - образовывать водные поры. Длина молекулы позволяет пронизать мембрану насквозь (в виде индивидуальной молекулы или димера). Образуемые каналы настолько крупны, что могут пропускать молекулу АТФ. Каналы имеют короткое время жизни - $10^{-6} - 10^{-8}$ сек, они то исчезают, то образуются - пульсируют. Некоторые антибиотики повышают селективную проницаемость и обладают свойствами ионофоров. Наиболее известный ионофор К$^+$ - валиноксид, ионофор Ca$^{2+}$ - иономицин.

Холестерин оказывает "разжигающий и конденсирующий" эффект. Избыток холестерина увеличивает микровязкость бислоя и уменьшает скорость таких реакций, которые имеют диффузионнозависимые лимитирующие стадии.

1.4. Растяжения и микроразрывы мембран в результате набухания клеток и их органелл.

Барьёрная функция является одной из наиболее важных функций клеточных мембран. Благодаря барьёрной функции происходит отделение внутриклеточного содержимого от внеклеточного, а также обеспечивается обособленность и относительная независимость содержимого органелл от внутриклеточного содержимого. Как известно, содержание электролитов Na$^+$, K$^+$, Cl$^-$, H$^+$, Ca$^{2+}$, Mg$^{2+}$ и др. во внеклеточной жидкости, цитоплазме и внутриклеточных органеллах в физиологических условиях существенно различается, что приводит к постоян-
ной пассивной диффузии ионов по градиенту концентрации внутрь клетки и из нее, а также к перемещению ионов между цитоплазмой и органеллами.

Поддержание ионной асимметрии во всех клетках организма, а также восстановление ионной асимметрии после завершения функционального этапа в возбуждаемых клетках осуществляется благодаря следующим свойствам мембран:

а) исходно низкой проницаемости гидрофобного слоя липидов для водорастворимых веществ (ионы, вода и др.);

б) наличию систем избирательного транспорта путем диффузии по градиенту концентраций через мембранные поры или гидрофильные белковые каналы (пассивная и облегченная диффузии);

в) наличию систем активного (АТФ-зависимого) транспорта против градиента концентрации с помощью транспортных ферментов (Na⁺/K⁺-АТФ-аза, H⁺-АТФ-аза, Ca²⁺-АТФаза), Na⁺/Ca²⁺ - и H⁺/Ca²⁺ -ионообменных механизмов;

г) наличию белковых, липопротеиновых и других комплексов, обладающих средством к электролитам и осуществляющих роль внутриклеточных депо.

При действии различных повреждающих факторов повышается неселективная проницаемость клеточных и внутриклеточных мембран для электролитов и воды, нарушаются системы пассивного и активного транспорта электролитов. Снижение активности Na⁺/K⁺-АТФ-азы приводит к увеличению внутриклеточного содержания Na⁺ и утеке K⁺. Стхиметрия Na⁺/K⁺-АТФ-азы в оптимальных условиях 3/2/1 (при гидролизе одной молекулы АТФ из клетки выводится три иона натрия и поступает в клетку два иона калия). При уменьшении содержания калия в клетке это отношение снижается до 1/1/1, что приводит к снижению мембранного потенциала и дальнейшему увеличению внутриклеточного содержания Na⁺.

Na⁺/K⁺ -АТФ-аза регулирует содержание воды в цитоплазме, что объясняется большой гидрофильностью Na⁺ по сравнению с K⁺. Гидратное число K⁺ равно 10,5, а Na⁺ - 16,6 молекул воды на ион. Увеличение содержания Na⁺ в клетке приводит к гидратации клетки.

Увеличение концентрации внутриклеточного кальция, связанное со снижением активности Ca²⁺ -АТФазы и Na⁺/Ca²⁺ -ионообменного механизма, приводит к открытию высокоселективных Ca²⁺ -зависимых калиевых каналов и увеличению скорости утечки K⁺ из клетки, что сопровождается дальнейшим развитием гидратации клетки.

Гипергидратация клетки может вызвать перерастяжение и микроразрывы цитоплазматических и внутриклеточных мембран.
1.5. Повреждающее действие иммунных комплексов и макромолекул на клеточные мембраны.

В повреждении мембран макромолекулами иммуноглобулинов и иммунных комплексов большое значение имеет активация системы комплемента по классическому пути. Компллементом называют систему сывороточных факторов, тесно связанных с системой иммунного ответа и участвующих в ряде других физиологических и патологических процессов. В настоящее время известно одиннадцать факторов комплемента, обозначенных с C1 до C9. C1 компонент состоит из трех субъединиц: C1g, C1r и C1s. Вначале к иммуноглобулину G (M), связанному с антителом на поверхности клеточной мембраны присоединяется C1g, и активирует C1r. Последний приобретает протеолитическую активность и расщепляет C1s, превращая его в сериновую протеиназу (Рис. 5).

Рис. 5. Механизм активации комплемента (по Mayer)

В свою очередь C1s последовательно расщепляет C4 и C2. Из их фрагментов C4b и C2a образуется активный компонент C4b2a, являющийся конвертазой 3-го компонента - C3-конвертаза. Она вызывает расщепление C3 на C3a и C3b. C3b ассоциируется с C4b2a, образуя C5-конвертазу. Последняя расщепляет C5 на C5a и C5b компоненты. В процессе активации образуются продукты, обладающие выраженными биологическими эффектами, результатом действия ко-
торых является развитие воспаления и вторичное (опосредованное) повреждение клеток.

Лизис клеток-мишеней развивается при совместном действии компонентов от C5b до C9, причем вначале на мембране фиксируется комплекс C5b67, к нему присоединяется C8 и C9. Это приводит к дестабилизации липидного бислоя мембраны и образованию гидрофильного канала, через который начинают проходить вода и соли (Рис. 6).

Для гибели клетки достаточно одного отверстия в мембране. Отверстия имеют диаметр до 10 нм. Образование множества отверстий приводит к осмотическому вздутию и взрыву клетки. Кроме того антитела и активированный комплемент проникают внутрь клетки и могут аналогичным образом разрушать внутриклеточные мембраны лизосом, митохондрий и других органелл. Активация системы комплемента полисахаридами клеточных стенок микроорганизмов, происходящая без участия антител (альтернативный путь), как правило, не сопровождается первичным повреждением клеток микроорганизма.

![Рис.6. Схема активированного комплемента (по Маугер)](image)

2. Нарушение механизмов энергетического обеспечения клеток.

Для нормальной жизнедеятельности клетки необходимо постоянное образование энергии, поскольку разнообразные процессы, связанные с использованием энергии АТФ, в клетках протекают постоянно. Например, для обновления белков расходуется около 15% всей энергии основного обмена, на поддержание трансмембранного градиента концентраций ионов калия и натрия - около 30%, значительное количество энергии расходуется на реализацию разнообразных
функций клеток. Каждая молекула АТФ расщепляется и вновь регенерируется примерно 2,5 тыс раз в сутки и средняя продолжительность жизни ее меньше 1 мин. Поэтому запасов АТФ в клетках практически не создается. Например, в сердечной мышце АТФ истощается за несколько секунд, если блокирован его синтез.

Нарушение энергетического обеспечения клеток, приводящее к нарушению ее функций и повреждению, может быть вызвано разнообразными факторами:
- алиментарными, связанными с голоданием, гипо- и авитаминозами В1, В2, РР;
- гипоксическими, связанными с нарушениями окисгенации крови или транспорта кислорода в ткани;
- митохондриальными, связанными с нарушением использования кислорода в клетках и вызванными ингибиторами ферментов дыхательной цепи, разоб- щителями окисления и фосфорилирования, мембранотропными веществами.

Наиболее частой причиной гипоэнергетических состояний, приводящих к повреждению клеток, является гипоксия. Гипоксия развивается при недостатке кислорода во вдыхаемом воздухе, нарушении вентиляции легких, уменьшении кислородной емкости крови, нарушении кровообращения. Типичной и наиболее изученной является так называемая ишемическая форма повреждения клеток, возникающая при системных и местных нарушениях кровообращения.

2.1. Ишемическое повреждение клеток

Тяжесть ишемического повреждения клеток зависит от степени нарушения кровообращения, сохранения выведения метаболитов из органа, продолжительности ишемии и температуры среды. Очень важным фактором является вид органа, подвергающегося ишемии, так как чувствительность различных органов к ишемии различна и при оценке на легко стандартизуемой модели тотальной ишемии снижается в ряду: головной мозг > печень > почки и сердце > скелет- ные мышцы > эндокринные органы > кожа.

При ишемическом повреждении энергообеспечение клеток нарушается на трех основных этапах: 1) синтеза АТФ, 2) транспорта ее энергии от места продукции к эффекторным структурам клеток и 3) утилизации энергии АТФ.

Нарушение синтеза АТФ. Основными причинами нарушения синтеза АТФ при ишемическом повреждении клеток является обусловленное дефицитом кислорода и субстратов метаболизма подавление окислительных процессов и развивающееся вторично повреждение структуры и ферментов митохондрий. Клетка реагирует при этом мобилизацией энергии из внутриклеточных запасов и уменьшением потребления энергии. Мобилизация внутриклеточных запасов энергии осуществляется путем использования богатых энергией веществ, например, креатинфосфата в мышечных и нервных клетках, мобилизацией глюко- гена, глюкозы, триглицеридов, активацией гликогена. Активацию гликолиза можно рассматривать как один из механизмов компенсации. Известно, что при полном окислении одной молекулы глюкозы образуется 38 молекул АТФ, а при гликолитическом расщеплении - всего лишь две молекулы (при гидролизе 1 моля АТФ выделяется 40 кДж энергии). Следовательно, этот механизм несо-
вершенен и не способен устранить дефицит макроэргических соединений в клетках, где основным источником энергии являются жирные кислоты и глюкоза, вовлекаемые в цикл трикарбоновых кислот. Ограничение потребления энергии осуществляется за счет уменьшения функциональной активности клетки, ограничения транспорта ионов и химических процессов синтеза.

Падение внутриклеточного парциального напряжения кислорода ниже так называемого критического уровня (примерно 1-2 мм рт. ст.) является лимитирующим фактором для основных этапов эробных энергопродуцирующих процессов:
1) окислительного образования ацетил-КоА из жирных кислот, пирувата и аминокислот;
2) метаболизма ацетильных групп в цикле трикарбоновых кислот;
3) транспорта электронов к кислороду, сопряженного с фосфорилированием.

Нарушение метаболизма жирных кислот проявляется внутриклеточной аккумуляцией жирных кислот, ацетилкарнитина и ацетил-КоА (СЖК, соединенной с КоА), которые оказывают существенное повреждающее действие на мембраны и ферменты клеток. Так, ацетил-КоА подавляет транспорт адениннуклеотидов в митохондриях, активность ацетил-КоА-синтетазы, СЖК ингибируют Na⁺/K⁺-АТФ-азу. Ацетилкарнитин ингибирует Na⁺/K⁺-АТФ-азу, Ca²⁺-АТФ-азу СР. Кроме того, ацетил-КоА, ацетилкарнитин и СЖК, внедряясь в липидную фазу мембран клеток и митохондрий, обусловливает их структурное и функциональное повреждение, сопровождающееся подавлением активности ферментов, в том числе участвующих в синтезе АТФ.

Увеличение интенсивности гликолиза сопровождается активацией фермента глицеральдегид-3-фосфатдегидрогеназы (ГА-3-ФДГ), что приводит к гиперпродукции восстановленных форм никотинамидаденидинуклеотида (НАДН) и никотинамидадениннуклеотид фосфата (НАДФН). Поскольку окисление пирохинонадинуклеотидов в малата- и глутамат-циклам механизме митохондрий ограничено, их концентрация возрастает до такого уровня, что подавляет активность ГА-3-ФДГ. Дефицит АТФ, необходимого для начального этапа гликозилирования, полностью прекращающегося при снижении содержания АТФ до 1-2% от исходного уровня, и подавление активности ГА-3-ФДГ приводит в конечном итоге к угнетению гликозилирования.

Накопление в клетке продуктов гидролиза АТФ, СЖК и их производных, лактата и пирувата, а также восстановленных форм коферментов (НАДН, НАДФН, ФАДН и др.) приводит к развитию внутриклеточного ацидоза.

Нарушение транспорта энергии АТФ. При ишемическом повреждении миокардиоцитов нарушается транспорт энергии АТФ от мест ее продукции к эффекторным структурам. Это является результатом повреждения 25 ферментных механизмов транспорта энергии макроэргических фосфатов, главным образом адениннуклеотид-трансфазы (АТФ/АДФ-трансфазы) и изомеров КФК. АТФ/АДФ-трансфаза расположена на внутренней мембране митохондрий и осуществляет перенос молекул АТФ из их матрикса в цитозоль в обмен на АДФ в соотношении 1:1, обеспечивая взаиморегуляцию интенсивности продукции
АТФ и ее использования эффекторными структурами клетки. АТФ/АДФ-транслоказа характеризуется очень низкой устойчивостью к гипоксии. Так, в миокарде снижение активности АТФ/АДФ-транслоказы на 80% наблюдается уже через 15 мин от начала ишемии.

В настоящее время доказано наличие в клетках миокарда креатинфосфокиназной системы, обеспечивающей доставку макроэргических фосфатов от митохондрий к местам их утилизации. Креатинфосфокиназа (КФК) представляет собой комплекс изоферментов, связанных с различными структурами клетки. Центральную роль в транспорте и распределении энергии в миокардиоцитах играет митохондриальная КФК, которая функционально прямо сопряжена с АТФ/АДФ-транслоказой. КФК сарколеммы участвует в поддержании трансмембранного переноса ионов. КФК миофibrил и других субклеточных органелл контролирует скорость регенерации АТФ и удаление АДФ в непосредственной близости от мембранных АТФаз.

Повреждение клетки обусловливает, с одной стороны, подавление активности КФК, с другой, - создает условия для выхода фермента из клеток. Показано, что гипоксия непосредственно снижает кинетические свойства КФК. Существенным фактором снижения активности КФК является нарушение ее связи с мембраной. Усиление гидролиза АТФ и накопление в клетке неорганического фосфата усиливают этот процесс. Таким образом, нарушение транспорта энергии АТФ от митохондрий к эффекторным структурам может быть результатом не только снижения активности КФК, но и нарушения энергозависимой связи фермента с клеточными мембранами.

Нарушение утилизации АТФ. В литературе имеются данные о прогрессирующем снижении активности АТФазы эффекторных структур поврежденной клетки. Так при ишемии миокарда снижается активность АТФазы миозина - фермента, участвующего в обеспечении процесса сократимости миофибрил за счет гидролиза АТФ. Следовательно, даже то малое количество АТФ, которое имеется в кардиомиоцитах в условиях ишемии миокарда, не может утилизироваться полностью. Отмечается также подавление активности Na\(^+\)/K\(^+\)-АТФазы сарколеммы, АТФазы митохондрий, Ca\(^{2+}\)-АТФазы СР.

Таким образом, приведенные выше данные свидетельствуют о существенном нарушении процессов энергетического обеспечения при ишемическом повреждении клеток не только на уровне продукции АТФ, но также транспорта и утилизации его энергии.

2.2. Реперфузионное повреждение клеток

Восстановление кровообращения в ткани после кратковременной ишемии может привести к полному восстановлению структуры и функций поврежденных клеток. Однако, восстановление кровообращения после длительной ишемии может привести к развитию так называемого реперфузионного повреждения.

В механизме развития реперфузионного повреждения клеток основное значение имеют:
а) фазные изменения локальной гемодинамики, заключающиеся в развитии реактивной гиперемии с последующим падением кровотока ниже исходного (феномен отсроченного неполного восстановления кровотока - феномен "no-reflow"), либо неполного восстановления кровотока, возникающего сразу после реперфузии органа (первичный феномен "no-reflow") на фоне длительной ишемии. Считают, что основными причинами возникновения феномена "no-reflow" являются вазоспастические изменения тонуса стенки мелких резистивных сосудов и механические препятствия для кровотока, связанные с отеком эндотелия, внутрисосудистой агрегацией клеточных элементов, перикардиальным отеком и сдавлением капилляров, а в мышечных органах (сердце, скелетных мышцах) - нарастающей ишемической контрактурой.

б) интенсификация ПОЛ мембран клеток и внутриклеточных структур вследствие развившейся в процессе ишемии недостаточности ферментов антиоксидантной защиты и гипероксиией. Приток кислорода в ранее ишемизированную зону приводит к массированному взаимодействию его с субстратами ПОЛ, являющихся донорами электронов, что сопровождается не только 4-электронным (оксидазным, полным) восстановлением молекулы кислорода, но и 1,2 или 3-электронной (оксигеназной, неполной) редукцией. Это обусловливает образование активных форм кислорода, взаимодействующих с органическими, прежде всего липидными субстратами, с образованием токсических перекисей.

Важнейшим источником активных форм кислорода при реперфузии являются фагоцитирующие клетки. Длительная ишемия тканей приводит к массивному образованию хемоаттрактантов в поврежденных тканях. При реперфузии фагоциты устремляются в поврежденные ткани, активируются, и начинают продуцировать в больших количествах активные формы кислорода.

в) избыточное накопление в клетках ионизированного кальция, вызывающее дальнейшее повреждение клеточных мембран в связи с активацией мембраносвязанных фосфолипаз и инициацией ПОЛ, набухание и повреждение митохондрий.

g) дальнейшее нарушение энергетического обеспечения клеток развивающееся в результате угнетения ферментов аэробного синтеза АТФ и ферментов утилизации энергии АТФ эффекторными системами клетки (ATFаза-мифобрилл, эндоплазматической сети, T-систем, плазмолеммы и др.), а также реперфузационным выведением из клеток ферментов синтеза и транспорта АТФ.

Реперфузционное повреждение клеток сопровождается больной интенсификацией ПОЛ мембран, большим накоплением в клетках ионов кальция и натрия, большим повреждением мембран и ферментных систем, чем при ишемии той же длительности. Так в экспериментах на белых крысах и собаках было показано, что утка КФК из миокардиоцитов и интенсивность хемилюминисценции через 40 минут реперфузии сердца после 40-минутной тотальной ишемии миокарда увеличилась в два раза по сравнению с 80-минутной ишемией миокарда. Было также показано, что степень реперфузционного повреждения находится в прямой зависимости от длительности предшествовавшей ишемии, причем необратимость повреждения органа, по мнению большинства исследователей, ха-
рактеризуют два основных феномена: 1) утрата барьерной функции клеточных мембран для ионов кальция, ведущая к массивному поступлению Ca^{2+} в клетку; 2) аккумуляция Ca^{2+} в митохондриях и неспособность последних к восстановлению своей функции после реперфузии.

Нарушение систем утилизации энергии ведет к замедлению потребления ATP. Время ишемии после которого наступает резкое замедление потребления ATP для сердца составляет 60 минут, для печени - 30 минут, для почек - 10-15 минут.

После реперфузии длительно ишемизированного массивного органа или группы органов может возникнуть ишемический шок, выражющийся в нарушении общего и местного кровообращения, развитии генерализованной циркуляторной гипоксии, нарушении метаболизма, структуры и функции жизненно важных органов. Это синдром жгучих конечностей (турникетный шок), синдром сдавления конечностей или части тела (синдром длительного раздавливания), состояние после реваскуляризации конечностей после тромбоза или эмболии магистральной артерии, синдром реплантации конечностей. Тяжесть ишемического шока и частота смертельных исходов при нем зависят от массы ишемизированного органа, продолжительности и полноты ишемии. В экспериментах на модели турникетного шока у крыс было убедительно доказано, что важнейшим патогенетическим звеном ишемического шока является действие токсических продуктов нарушенного метаболизма, поступающих в организм из ишемизированного органа после его реперфузии. Одним из вероятных факторов генерализованных гемодинамических расстройств и повреждения жизненно важных органов является активация ПОЛ в ишемизированных и реперфузионных органах. Токсический эффект продуктов ПОЛ, вымывающихся в кровь после реперфузии длительно ишемизированных конечностей, может быть обусловлен как индукцией этими продуктами перекисных реакций в неишемизированных органах, так и непосредственно повреждающим действием, оказывающимся на мембранные структуры органов.

2.3. Роль ионизированного кальция в механизмах ишемического и реперфузионного повреждения клетки

В организме кальций служит одним из "вторичных мессенджеров"; он передает внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или химических соединений поступают к клетке извне на ее мембрану. Чтобы кальций эффективно управлял клеточными процессами, его функционирование в свою очередь должно подвергаться регуляции. Поэтому в клетке в ходе эволюции возникла сложная система белков, которые взаимодействуют с Ca^{2+}, тем самым управляя передачей и получением внутриклеточных сообщений. С нарушениями регуляции внутриклеточного кальция связаны, по-видимому, многие болезни.

Как известно, концентрация ионов кальция во внеклеточной жидкости составляет 2x10^{-3} М, а внутри клетки – 10^{-7} М. Механизмы, поддерживающие постоянство внутриклеточного содержания Ca^{2+} представлены на рис.7.
Выведение избытка кальция из клетки осуществляется Ca\(^{2+}\) -насосом цитоплазмы, функционирование которого обеспечивается Mg\(^{2+}\)-зависимой, Ca\(^{2+}\)-стимулируемой АТФазой. Ca\(^{2+}\)-АТФаза активируется кальмодулином, который в свою очередь фосфорилируется цАМФ- зависимой протеинкиназой, поэтому при дефиците АТФ выведение Ca\(^{2+}\) из клетки уменьшается.

Рис. 7. Системы, принимющие участие в регуляции свободного кальция в цитоплазме:
1. Ca\(^{2+}\) -насос;
2. Na\(^{+}\) / Ca\(^{2+}\) -обменник;
3. Вход Ca\(^{2+}\), опосредованный через специфический переносчик;
4. Потенциалзависимые Ca\(^{2+}\) -каналы;
5. Рецепторзависимые Ca\(^{2+}\) -каналы;
6. Ca\(^{2+}\), связанный с внутриклеточными мембранами;
7. Ca\(^{2+}\), связанный с хелаторами цитоплазмы;
8. Аккумуляция Ca\(^{2+}\) эндолизматическим ретикулумом;
9. Аккумуляция Ca\(^{2+}\) митохондриями.
Важная роль в поддержании кальциевого гомеостаза принадлежит Na⁺/Ca²⁺-ионообменному механизму. С помощью мембранного переносчика происходит обмен одного внутриклеточного иона кальция на 2, 3 или 4 иона натрия, находящихся вне клетки. Источником энергии для выведения Ca²⁺ против градиента концентрации является электрохимический градиент Na⁺. Таким образом, Na⁺/K⁺-насос, использующий энергию АТФ для поддержания электрохимического градиента Na⁺, косвенно способствует поддержанию электрохимического градиента Ca²⁺. При снижении активности Na⁺/K⁺-АТФазы, вызванном дефицитом энергии или повреждением плазмомеммы, выведение Ca²⁺ из клетки уменьшается. Кроме того, при повышении содержания в клетке Na⁺ часть переносчиков начнет переносить ионы в противоположном направлении (внутриклеточные ионы натрия будут обменяться на внеклеточные ионы кальция). Так, например, при двухкратном (с 12 до 24 мМ) увеличении внутриклеточной концентрации Na⁺ скорость входа Ca²⁺ в клетку возрастает в 8 раз.

Большая часть внутриклеточного кальция заключена в ЭР и митохондриях, обладающих автономными Ca²⁺-транспортующими системами. Часть внутриклеточного кальция находится в связанном с мембранами и хелаторами цитоплазмы состоянии. Основное количество высокоселективных участков связывания кальция локализовано на внутренней поверхности цитоплазматической мембраны (кисье ФЛ, Ca²⁺-связывающие белки) и белках цитоскелета мембраны. К хелаторам или поглощающим Ca²⁺ белкам относятся кальмодулин, фосфоламб, тропонин, папавульбин, акворин и др.

Регуляторные белки - кальмодулин и фосфоламбан увеличивают молекулярную активность Ca²⁺-насоса в fosфосорированном состоянии. В дефосфорирированном состоянии на свойства Ca²⁺-насоса не влияют. Фосфорилируются цАМФ-зависимой протеинкиназой. При дефиците энергии и ацидозе снижается активность цАМФ-зависимой протеинкиназы, фосфорилирующий кальмодулин (оптимум рН = 6,8), что приводит к нарушению (снижению) активности Ca²⁺-насоса и увеличению поступления экзогенного кальция через кальциевы каналы. Оптимум рН для протеинкиназы, фосфорилирующий фосфоламбан составляет 6,0, что в условиях ацидоза компенсирует отрицательное влияние низкого рН на fosфосорирование протеинкиназы кальмодулина.

В клетку в состоянии покоя Ca²⁺ поступает через специальные переносчики по механизму облегченной диффузии. При электрическом возбуждении кальций входит в клетку через медленные потенциалзависимые каналы, при гормональном возбуждении - через рецепторзависимые Ca²⁺-каналы.

Так как ритмические изменения в распределении кальция между внеклеточной жидкостью и клеткой, а также цитозолем и внутриклеточными органеллами наиболее важна для функционирования мышечных клеток, повреждения барьерных свойств мембран для Ca²⁺ при острой ишемии и реперфузии изучены в основном на модели ишемии сердца и скелетных мышц.

Увеличение содержания цитоплазматического Ca²⁺ наблюдается уже в ранние сроки ишемии. Это обусловлено в основном его выходом из внутриклеточных мест депонирования - митохондрий и везикул саркоплазматического рети-
кулума (ВСР). В норме митохондрии и ВСР депонируют около 98% общего содержания Ca\(^{2+}\) в клетке, вследствие чего потеря этими органеллами способности аккумулировать Ca\(^{2+}\) не может не вызвать увеличения содержания Ca\(^{2+}\) в цитоплазме.

Уже через несколько секунд после начала глубокой ишемии миокарда содержание АТФ и КФ в клетках начинает уменьшаться. Примерно через одну минуту содержание КФ снижается более, чем на 80%, через 15 минут исчезает 65% общего содержания АТФ в ткани и 55% всех адениннуклеотидов. Через 40 минут ишемии запасы макроэргических фосфатов практически полностью истощаются, и ткань необратимо повреждается до такой степени, что не способна восстановиться при реперфузии. Истощение запасов АТФ и КФ приводит к повышению концентрации Ca\(^{2+}\) в цитозоле, которое связано с ингибированием Ca\(^{2+}\)-АТФ-азы сарколеммы и Na\(^+\)/K\(^+\)-АТФазы. Повышение содержания Na\(^+\) в клетке в свою очередь может ускорить вход Ca\(^{2+}\) в обмен на Na\(^+\).

Выход Ca\(^{2+}\) из митохондрий в цитоплазму при ишемии различных органов был выявлен с помощью электроно-микроскопических исследований уже в первые 5-20 минут. Снижение способности митохондрий аккумулировать Ca\(^{2+}\) в ранние сроки ишемии обусловлено, повидимому, не столько дефицитом АТФ, сколько снижением электрического трансмембранного потенциала и активности Н\(^+\)/Ca\(^{2+}\)-обменного механизма.

Ишемия миокарда сопровождается значительным увеличением содержания адреналина в сердце, что приводит к активации медленных каналов и поступлению Ca\(^{2+}\) в миокардиоциты.

Снижение барьёрной функции цитоплазматической мембраны для Ca\(^{2+}\), развивающееся вследствие интенсификации ПОЛ и активации Ca\(^{2+}\)-зависимых фосфолипаз, сопровождается поступлением кальция из гликокаликса и внеклеточной жидкости в цитоплазму и отмечается при более длительной и тяжёлой ишемии. Повышение проницаемости мембраны митохондрий в связи с активацией фосфолипазы А приводит к избыточному поступлению кальция в матрикс митохондрий и его соединению с накопившимися в митохондриях анiones неорганического фосфата (действие "анионной фосфатной ловушки кальция").

Увеличение осмотического давления в матриксе митохондрий сопровождается поступлением в них воды и набуханием органелл. Следствием гипергидратации митохондрий является разобучение процессов окисления и фосфорилирования и дальнейшее снижение синтеза АТФ. Нарушению энергетики клетки способствует потеря ферментов внутриклеточного транспорта энергии и адениновых оснований, являющихся предшественниками синтеза АТФ. Развитие ишемического повреждения миокарда, связанное с перегрузкой клеток кальцием показано на рис.8.

Реперфузия ишемизированных тканей сопровождается прогрессирующим увеличением концентрации в клетках Ca\(^{2+}\). Степень этого увеличения прямо коррелирует с длительностью предшествующей ишемии. Реперфузия длительно ишемизированного органа практически мгновенно повышает проницаемость плазматической мембраны для кальция в связи с резкой интенсификацией ПОЛ
и активацией фосфолипазы. Повышение содержания внеклеточного кальция, обусловленное восстановлением притока крови, на этом фоне приводит к массивному перемещению кальция из внеклеточной жидкости в клетку.

Чрезмерное накопление Ca^{2+} в цитозоле, усиление $\text{H}^+ / \text{Ca}^{2+}$-противоточного механизма энергизированных митохондрий, а также накопление в них неорганического фосфата приводят к перергузке митохондрий кальцием. Явление избыточного транспорта Ca^{2+} при реперфузии органа из крови (или перфузата) через плазматическую мембрану в клетку, а оттуда в митохондрии получило название "кальциевого парадокса". Он тесно связан с "кислородным парадоксом" и является одним из наиболее существенных признаков реперфузионного повреждения органов.

Рис. 8. Нарушение кальциевого гомеостаза при ишемическом повреждении клеток.

Последствия увеличения внутриклеточного содержания Ca^{2+}:
- повреждение клеточных мембран и снижение активности мембрансвязанных ферментных систем вследствие активации Ca\(^{2+}\)-зависимых протеаз и мембрансвязанных фосфолипаз, а также интенсификации ПОЛ. Прооксидантное действие Ca\(^{2+}\) связано с увеличением образования инициаторов ПОЛ (активных форм кислорода), субстратов этого процесса (фосфолипидов, СЖК и др.) и снижением активности ферментов антиоксидантной системы клеток.
- повреждение митохондрий, разобожение процессов окисления и фосфорилирования и уменьшение образования АТФ.
- повышение осмотического давления в цитоплазме вызывает набухание клеток и нередко разрыв цитоплазматической мембраны, ведущие к необратимым структурным изменениям клеток.
- усиление внутриклеточного ацидоза в связи с активацией фосфорилазы и интенсификации гликолиза. При реперфузионном повреждении клеток усиливается выход водородных ионов из митохондрий, сочетающийся с транспортом кальция в митохондрии. Избыток H\(^+\) ингибирует Ca\(^{2+}\)-транспортирующую функцию СР, активирует гидролитические ферменты лизосом, снижает сократительную функцию миофибрилл, повреждает белковые компоненты клеточных мембран, активирует ПОЛ.
- в миоцитах сердца и сосудов снижение степени расслабления миофибрил и развитие их контрактуры, ведущее к уменьшению внутриклеточных запасов АТФ.

Перечисленных факторов достаточно, чтобы вызвать необратимые повреждения и гибель клеток.

Для предупреждения повреждения клеток в результате кальциевой перегрузки и коррекции нарушений обмена Ca\(^{2+}\) в клетках в настоящее время нашли широкое применение кальциевые антагонисты: верапамил, метоксиверапамил (D-600), нифедипин, дицилазем и др. Механизм действия этих препаратов связан с вытеснением Ca\(^{2+}\) с поверхности клеток и блокадой медленных кальциевых каналов.

3. Нарушение механизмов, контролирующих пластическое обеспечение клетки и деятельность ядра

Важным механизмом повреждения клетки является нарушение функции ядра, рибосом и других структур, ответственных за обеспечение клетки пластическими материалами, поддержание внутриклеточного гомеостаза и процессов клеточного деления.

Повреждение генетического аппарата клетки проявляется в виде генных и хромосомных мутаций. Генные мутации могут быть связаны с заменой отдельных нуклеотидов в цепи ДНК на другие (транзисцией и трансверсией). Следствием таких мутаций может быть замена одной аминокислоты в полипептидной цепи, контролируемой геном. Примером таких мутаций является синтез патологического гемоглобина S у больных серповидно-клеточной анемией, отличающегося от нормального гемоглобина A\(_1\) тем, что в β-цепи глутаминовая кислота заменена на валин. При снижении парциального напряжения кислорода
в крови гемоглобин S конденсируется, что приводит к деформации, а затем и гибели эритроцита.

При другом виде генных мутаций происходит выпадение или вставка отдельных нуклеотидов (или группы их). Если число недостающих или избыточных нуклеотидов не кратно трем (триплет — единица генетического кода), то произойдет свдвиг рамки считывания при транскрипции и трансляции, и начиная с точки, в которой произошла мутация, вся структура полипептида может измениться, что может привести к полной утрате его функциональной активности. Выпадение может захватывать не отдельные нуклеотиды или короткие их последовательности, а целые гены, тогда говорят о полной делеции гена. Хромосомные мутации характеризуются структурной перестройкой одной или нескольких хромосом, связанной с утратой или дупликацией их участков, изменением положения участков в той же хромосоме или переносям в другую хромосому. Изменения числа хромосом в наборе, не сопровождаемые изменениями их структуры называются геномными мутациями.

Кроме мутаций ядерного генетического материала возможны и мутационные изменения цитоплазматических генов (плазмогенов). В клетке человека такие гены представлены в основном ДНК митохондрий.

Причиной возникновения мутаций может быть действие УФ-лучей, всех видов ионизирующих излучений, химических повреждающих агентов, чужеродных нуклеиновых кислот, вирусов. Например, онкогенные вирусы, внедряясь в клетку, вызывают дерепрессию гена клеточного деления. В результате трансформированная клетка приобретает способность к неконтролируемому клеточному делению.

При химическом (азотистая кислота, алкилирующие соединения и др.) и радиационном повреждении клеток возможны грубые повреждения молекулы ДНК в виде одно- и двунитевых разрывов, образования поперечных сшивок. Однако, значительная часть поврежденных молекул ДНК восстанавливается благодаря процессам репарации - исправлению мутационного повреждения генетического материала. Экскизионная репарация заключается в "вырезании" с помощью эндонуклеаз и рестриктаз поврежденных участков и застройкой "брешей" с участием ДНК-полимераз нормальными нуклеотидными последовательностями. Соединение концов старой нити с вновь застроенными участками ДНК осуществляется с участием лигазы. Пострепликативная (рекомбинационная) репарация происходит с участием ДНК-полимераз и лигаз путем обмена участками ДНК, взятыми от одних молекул и встраиваемых в "брешь", оставшуюся в других молекулах. Основу надежности генетического аппарата клетки составляют дублированность его структурных элементов, механизмы репарации и матричный принцип биосинтеза ДНК и РНК.

4. Повреждения рецепторного аппарата клетки и внутриклеточных механизмов регуляции её функций.

Рецепция, обеспечивающая восприятие и передачу информации клетке для формирования адекватной ответной реакции при воздействии какого-либо хи-
мического сигнала, является одним из важнейших гомеостатических механизмов на клеточном и субклеточном уровне, имеющем несомненное значение для организма в целом. В соответствии с современными представлениями об ассиметричном строении плазматических мембран рецепторные макромолекулы (гликопротеиды) могут находиться на их поверхности, пронизывать всю толщу мембраны или находиться с внутренней стороны мембраны. Физиологически активное вещество (лиганда) реализует свой эффект через взаимодействие с рецептором. Для многих рецепторов существуют системы усиления полученного сигнала (напомним, система G-белков, циклазные системы).

Первичные мессенджеры (гормоны или какие-то факторы микроокружения клеток), взаимодействуя со специфическими рецепторами на внешней стенке клеточной мембраны, передают сигналы путём стимуляции того или иного G-белка (белки, связывающие гуаниловые нуклеотиды). Прикреплённые к внутренней поверхности цитоплазматической мембраны, G-белки действуют на связанные с мембранной посредники - эффекторы. Часто эффекторами являются ферменты, превращающиеся в неактивной форме молекулы-предшественника в активное вторичное мессенджера, способного перемещаться путём диффузии в цитоплазме и передать сигнал.

Наряду с аденилатциклазой и ГМФ-фосфодиэстеразой к числу таких эффекторов принадлежат другие ферменты и мембранные каналы, регулирующие потоки ионов через клеточную мембрану. Среди них особенно интересен фермент фосфопипаза С. Он расщепляет мембранный фосфолипид фосфатидилпирофосфат с образованием двух вторичных мессенджеров инозитолтрифосфата и диацилглицерола. Инозитолтрифосфат повышает внутриклеточное содержание Ca$^{2+}$, высвобождая его из внутриклеточных запасов, в основном из ЭР. Диацилглицерол резко повышает сродство протеинкиназы С и Ca$^{2+}$. Протеинкиназа С fosфорилирует многие белки и имеет некоторое (но не все) общие субстраты с цАМФ-зависимой протеинкиназой. Кроме того показано, что некоторые канцерогенные форболевые эфиры имитируют эффекты диацилглицерола.

В настоящее время известно более 100 рецепторов, передающих сигналы через G-белки и более 20 G-белков полученных в очищенном виде. Молекула G-белков состоит их трёх субъединиц - полипептидных цепей, называемых от большей к меньшей α, β и γ. Во всех выделенных G-белках α-субъединицы различные, а β и γ могут быть как одинаковыми, так и различными. В состоянии покоя α-, β- и γ-субъединицы образуют комплекс, в котором α-субъединица связана с ГДФ. После того как гормон или другой первичный мессенджер присоединяется к рецептору, конформация последнего меняется, и он в свою очередь связывает G-белок. В результате этого взаимодействия α-субъединица высвобождает ГДФ, а ΓГФ занимает открывшийся участок связывания, что изменяет форму α-субъединицы и активирует её.

Активированная и связанная и ГГФ α-субъединица отделяется от β- и γ-субъединиц и путём диффузии перемещается по внутренней поверхности плазматической мембраны до тех пор, пока не свяжется с эффектором, например,
аденилатциклазой. Обычно через несколько секунд \(\alpha \)-субъединица гидролизует ГТФ до ГДФ и тем самым инактивируется. После инактивации \(\alpha \)-субъединица теряет связь с эффектором и связывается со свободными \(\beta \)- и \(\gamma \)-субъединицами.

Таким образом, G-белки служат "переключателями" и "таймерами", определяющими, когда и как долго сигнальные пути включены или выключены. Включение происходит, когда связанная с ГТФ \(\alpha \)-субъединица присоединяется к эффектору, а выключение - когда ГТФ гидролизуется до ГДФ.

G-белки также обладают способностью усиливать сигналы. Например, одна \(\alpha \)-субъединица Гц-белка, связываясь с молекулой аденилатциклазы, может стимулировать синтез многих молекул цАМФ прежде, чем истечёт время активации \(\alpha \)-субъединицы и ГТФ не превратится в ГДФ.

Торможение гидролиза ГТФ может привести к необратимой активации аденилатциклазы. Так было сказано, что гипофилярная субъединица холерного токсина представляет собой фермент АДФ-рибозилазу, который ковалентно присоединяет АДФ-рибозу к Гц-белку, тем самым необратимо активируя аденилатциклазу ситет.

В результате в клетках эпителия кишечника накапливается избыток цАМФ, вызывающий выделение клетками огромного количества воды и электролитов в просвет кишечника. Помимо повреждения клеток кишечника развивается опасная для жизни субъединичная структура, приводящая к вторичному повреждению клеток жизненно важных органов. Интересно, что холерный токсин может стимулировать секрецию тиреоидных гормонов клетками щитовидной железы, стероидных гормонов - клетками коры надпочечников, а также способствует высыханию СЖК в жировых клетках.

Помимо стимулирующего (Гц) белка известен ингибирующий - Гп-белок. Оба белка имеют одинаковую субъединичную структуру - \(\alpha \)-, \(\beta \)- и \(\gamma \). Б-субъединицы Гц- и Гп-белков идентичны, \(\alpha \)-субъединицы различные. ГТФ активирует как Гц, так Гп, т.е. "заставляет" Гц стимулировать, а Гп - ингибировать аденилатциклазу. Однако \(\alpha \)-субъединица Гп-белка обладает лишь слабым ингибирующим эффектом.

Выведению функции Гп-белка помогло обнаружение бактериального токсина, специфически влияющего на этот белок. Коклюшный токсин приводит к АДФ-рибозилированию \(\alpha \)- и \(\beta \)-субъединиц Гп-белка, и в результате блокируется диссоциация комплекса на \(\alpha \)- и \(\beta \)-субъединицы. Это предотвращает накопление для ингибирования \(\alpha \)-субъединиц Гп-белка. В результате появляется достаточно \(\alpha \)-субъединиц Гц-белка, чтобы вызвать стойкую активацию аденилатциклазы. Этот токсин действует на многие типы клеток, вызывая, по-видимому, развитие иммунодефицита и воспаления.

В возникновении некоторых опухолевых заболеваний, возможно, играют роль мутантные формы Гц- и Гп-белков. Например, в клетках опухоли гипофиза был обнаружен ген, кодирующий мутантную \(\alpha \)-субъединицу Гц-белка. В результате мутации её взаимодействие с эффекторами длится минуты, а не секунды, что может привести к избыточному клеточному росту.
Вторичные мессенджеры активируют протеинкиназы: цАМФ активирует А-киназу, цГМФ - G-киназу, диацилглицерол - C-киназу, Ca\(^{2+}\) - кальмодулинзависимую киназу, которые катализируют перенос фосфатной группы от донора (обычно молекулы АТФ) к молекуле соответствующего белка. Циклические нуклеотиды опосредуют действие внешних и внутренних факторов и специализированных регуляторных сигналов (гормонов и нервных импульсов) на генетическом (транскрипционном), посттранскрипционном и ферментативном уровнях. В обобщенном виде модель функционирования известных в настоящее время рецепторных механизмов представлена на рис. 9.

Рис. 10. Обобщенная модель рецепторных механизмов реализации действия на клетку физиологически активных веществ (по П.В.Сергееву).
Штриховыми линиями показано сопряжение рецепторов с различными структуро-функциональными образованиями клетки.
БПГ - белковопептидный гормон;
СГ - стероидный гормон;
ЦРСГ - цитозольный рецептор стероидных гормонов;
Т4 - тироксин; Т3 - трийодтиронин;
ТСБЦ - тироксинсвязывающий белок цитоплазмы;
РТ - ядерный рецептор трийодтиронина.
Нарушения восприятия и реализации клеткой внешних сигналов могут развиться на уровне рецепторного аппарата, вторичных мессенджеров или биохимических реакций в клетке, регулируемых соответствующими протеинкиназами.

Нарушения функции рецепторного аппарата могут быть вызваны:

- прямым повреждением рецепторов аутоантителами, продуктами ПОЛ, радиотоксинами, микробными токсинами и др. Например, повреждение антителами холинорецепторов концевой пластинки при миастении приводит к развитию прогрессирующей мышечной слабости. Повреждение рецепторов клеток продуктами ПОЛ при инфаркте миокарда, радиотоксинами при острой лучевой болезни приводит к извращенной реакции организма на действие лекарственных препаратов.

- уменьшением плотности рецепторов на цитоплазматической мембране (десенситизация) при длительном избыточном действии лиганда. Например, чрезмерная интернализация (погружение в клетку) с последующей деградацией β2-адренорецепторов гладких мышц бронхов и тучных клеток у больных бронхиальной астмой при длительном применении адреномиметиков, рецепторов ацетилхолина скелетных мышц при отравлении фосфоорганическими соединениями.

- изменением конформации участков специфического связывания лигандов. Например, изменение конформации гликопroteидов при нарушении физико-химических свойств цитоплазматической мембраны миокардиоцитов и нарушении структуры аннулярных липидов продуктами ПОЛ и фосфолипиды при ишемическом повреждении миокарда, при избыточном отложении холестерины в мембранах клеток стенок сосудов у больных атеросклерозом. С изменением конформации рецепторов гормонов связаны гормонрезистентные формы гипофизарного нанизма, несахарного диабета и гипопаратиреоза.

- блокадой рецепторов конкурентными ингибиторами природного происхождения или лекарственными препаратами. Например, блокада холинорецепторов скелетных мышц при отравлении курарам, глициновых рецепторов спинного мозга и ствола мозга при отравлении стрихнином.

Нарушение механизмов внутриклеточной регуляции может быть связано с недостаточным либо чрезмерным образомованием или гидролизом вторичных мессенджеров, что приводит к изменению нормального содержания цАМФ. Так, например, в опухолевых клетках человека и животных наблюдаются повышение активности фосфолипазы б2 циклических нуклеотидов, изменение регуляторной (рецепторной) субъединицы аденилатциклазы, проявляющиеся в понижении или потере ответов аденилатциклазы на гормоны, значительное уменьшение содержания цАМФ и увеличение содержания цГМФ. Результатом этих нарушений является усиленная пролиферация опухолевых клеток, утрата контактного торможения, относительная автономность и другие свойства.
В основе новшения сосудистого тонуса и устойчивости сосудов к расслаблению при гипертонической болезни лежат потеря чувствительности аденилатциклазы к стимулирующим ее активность факторам и повышение активности фосфодиэстеразы цАМФ. В результате этого наблюдается снижение содержания в клетках мышц сосудов цАМФ и увеличение содержания Ca^{2+}.

Нарушения регуляции функции клетки могут возникнуть в результате снижения сродства к цАМФ белков, активируемых этим нуклеотидом, либо дефекта ферментных систем и метаболических расстройств, исключающих реализацию в полном объеме регуляторных влияний гормонов и биологически активных веществ. Например, в опухолевых клетках обнаружено снижение сродства к цАМФ белков, специфически акцептирующих этот нуклеотид, или потеря некоторых из них. При свинцовом отравлении в результате дефекта ферментных систем, ответственных за включение атома железа в молекулу гема, нарушается синтез гемоглобина.

Понятие вторичного внутриклеточного посредника в равной степени применимо и к ионам кальция. В большинстве случаев цАМФ и Ca^{2+} выступают как внутриклеточные посредники реализации различных функций клеток, действуют как синергисты. Многие реакции контролируются цАМФ без участия Ca^{2+}, но остановка их связана с активацией фосфодиэстеразы этими катионами.

Взаимодействия между цАМФ и Ca^{2+} подразделяются на два типа, в соответствии с их ролью в работе одно- или двухуправляемых систем в отдельных клетках мишенях. Одноуправляемые системы присутствуют в клетках, регулируемыми только одним стимулом по принципу “включение-выключение”, в зависимости от присутствия или отсутствия стимула.

В разных видах клеток в качестве второго посредника может действовать Ca^{2+} или цАМФ, и, если образуется цАМФ, то он усиливает кальциевый сигнал. К тканям, в которых функционируют одноуправляемые контрольные системы, относятся нервная ткань, мозговой слой надпочечников, мочевой пузырь, передняя доля гипофиза, эндокринная и экзокринная части поджелудочной железы, кора надпочечников, слюнные железы и фоторецепторные органы. Во всех этих тканях активность регулируется только в одном направлении (“включена-выключена”), причем активность прекращается после удаления стимула. В большинстве случаев вторым посредником является, по-видимому, Ca^{2+}, а цАМФ оказывает усиливающее действие на кальциевые эффекты. В тканях, контролируемых тропными гормонами гипофиза, цАМФ играет более важную роль, но действуют в тесной связи с Ca^{2+}.

Двухуправляемые контрольные системы функционируют в клетках, регулируемыми двумя независимыми стимулами, например, когда один стимул “запускает” клеточную активность, а второй останавливает реакцию, обычно противодействуя первому стимулу. В таких тканях, как правило, именно Ca^{2+} служит первичным сигналом первого стимула, а цАМФ опосредует ингибиторный эффект второго стимула, модулируя внутриклеточный уровень Ca^{2+}. Таким образом, в двухуправляемых системах эффекты цАМФ и Ca^{2+} антагонистичны. Двухуправляемую систему регуляции имеют гладкая и сердечная мышцы, туч-
ные клетки, тромбоциты, меланофоры и гепатоциты. В этих клетках активация обусловливается повышением уровня Ca^{2+}, выходящего из внутриклеточных запасов или поступающего из вне, а противодействующие стимулы снижают содержание Ca^{2+} в цитоплазме за счёт действия cAMF.

Что касается роли cGMP в регуляции функции клеток, то в последнее время становится всё более очевидным, что уровень cGMP часто регулируется внутриклеточной концентрацией Ca^{2+}, а не является первичным антагонистом cAMF.
Список рекомендуемой литературы по теме "Молекулярные механизмы повреждения клеток"

Основная литература:

Дополнительная литература
5. Л.И.Ольбинская, П.Ф.Литвицкий.//Коронарная и миокардиальная недостаточность. - М., Медицина, 1986.
7. Д.Теппермен, Х.Теппермен.//Физиология обмена веществ и эндокринной системы. - М., Мир, 1989, С.57-84
ПРИЛОЖЕНИЕ
Вопросы для самоконтроля знаний по теме
"Молекулярные механизмы повреждения клеток"
Тесты 1 уровня
1. Верно ли, что специфические проявления повреждения определяются природой и свойствами повреждающего агента?
 1. Да 2. Нет
2. Возможно ли сочетание специфических и неспецифических проявлений повреждения при действии конкретного болезненсворотного агента?
 1. Да 2. Нет
3. Всегда ли необратимые повреждения клетки приводят к ее немедленной гибели?
 1. Да 2. Нет
4. Можно ли считать нарушение целостности мембраны лизосом признаком необратимого повреждения клеток?
 1. Да 2. Нет
5. Могут ли ионы кальция влиять на процессы свободнорадикального ПОЛ?
 1. Да 2. Нет
6. Способствует ли усиление процессов перекисного свободнорадикального окисления в поврежденной клетке улучшению ее энергообеспечения?
 1. Да 2. Нет
7. Верно ли, что при радиационной травме рН в поврежденной клетке увеличивается?
 1. Да 2. Нет
8. Какие из перечисленных веществ ослабляют повреждающий эффект свободных радикалов?
 1. глутатионпероксидаза 6. ненасыщенные жирные кислоты
 2. кислород 7. супероксиддисмутаза
 3. каталаза 8. препараты селена
 4. витамин Е 9. убихиноны
 5. витамин D 10. ионы
9. Назовите последствия активации ПОЛ клеточных мембран:
 1. увеличение гидрофобности липидов
 2. уменьшение гидрофобности липидов
 3. образование ковалентных сшивок между молекулами липидов и белков
 4. нарушение структурной целостности цитоплазматической мембраны
 5. изменение конформации рецепторных белков
 6. гипергидратация клетки
 7. дегидратация клетки
 8. уменьшение внутриклеточного содержания Ca^{2+}
 9. увеличение внутриклеточного содержания Ca^{2+}
10. Какие ионы, в основном, активируют: а) мембраносвязанные фосфолипазы, б) фосфолипазы лизосом?
 1. ионы водорода 3. ионы магния
2. ионы марганца
4. ионы кальция

11. Укажите компоненты комплемента, образующие большой мембраноатуиющий литический комплекс:
 1. С1
 2. С2а
 3. С3в
 4. С4в
 5. С5в
 6. С6
 7. С7
 8. С8
 9. С9

12. Назовите последние актиации комплемента:
 1. образование сквозных каналов в цитоплазматической мембране клеток
 2. стимуляция секреции гистамина тучными клетками
 3. торможение фагоцитоза
 4. активация полиморфноядерных лейкоцитов

13. Укажите, в какой последовательности убывает чувствительность органов к ишемии:
 1. скелетные мышцы
 2. сердце
 3. головной мозг
 4. печень
 5. эндокринные железы
 6. кожа

14. Какие из перечисленных изменений внутриклеточного метаболизма при ишемическом повреждении клетки можно отнести к компенсаторным?
 1. мобилизацию гликогена
 2. усиление анаэробного гликоза
 3. мобилизацию креатинофосфата
 4. разобщение окисления и фосфорилирования в митохондриях
 5. потерю клеткой пуриновых оснований
 6. уменьшение синтеза белков
 7. увеличение синтеза белков

15. Укажите механизмы реперфузионного повреждения клеток:
 1. активация ПОЛ
 2. избыточное накопление в клетках ионизированного кальция
 3. активация ферментов синтеза и транспорта АТФ
 4. активация мембранных фосфолипаз
 4. увеличение поступления в поврежденную клетку кислорода

16. Какие из перечисленных феноменов указывают на необратимость реперфузионного повреждения органа?
 1. кальцийный парадокс
 2. увеличение внутриклеточного содержания ионов натрия
 3. перегрузка митохондрий кальцием и гипергидратация их
 4. значительная потеря адениновых оснований и КФК
 5. активация ферментов лизосом
 6. кислородный парадокс

17. Увеличение содержания свободного ионизированного кальция в клетке сопровождается:
 1. увеличением выхода ионов калия из клетки
 2. гипергидратацией клетки
 3. увеличением содержания свободного кальмодулина
4. активацией фосфолипазы А2
5. инактивацией фосфолипазы С
6. гиперполяризацией цитоплазматической мембраны
5. активацией ПОЛ мембран
18. Измерение концентрации свободного ионизированного кальция в 2 соседних клетках почечного эпителия дали следующие результаты: клетка А - 10^{-3} М, клетка Б - 10^{-7} М. Какая из двух клеток повреждена?
1. клетка А 2. клетка Б
19. Назовите последствия снижения активности цАМФ-зависимой протеинкиназы, фосфорилирующей кальмодулин:
1. повышение активности Ca$^{2+}$-насоса цитолеммы
2. снижение активности Ca$^{2+}$-насоса цитолеммы
3. повышение внутриклеточной концентрации Ca$^{2+}$
4. снижение внутриклеточной концентрации Ca$^{2+}$
5. активация мембраносвязанных фосфолипаз
6. активация лизосомальных фосфолипаз
20. Укажите, какие из перечисленных ниже показателей свидетельствуют о повреждении трансмембранных ионных насосов:
1. уменьшение содержания внутриклеточного кальция
2. увеличение содержания внутриклеточного кальция
3. уменьшение содержания внутриклеточного калия
4. увеличение содержания внутриклеточного калия
5. уменьшение содержания внутриклеточного натрия
6. увеличение содержания внутриклеточного натрия
21. Какие из указанных изменений метаболизма клетки могут стать причиной повреждения ее мембран?
1. аккумуляция в клетке СЖК, ацилкарнитина и ацил-КоA
2. активация перекисного окисления липидов
3. активация гуанилатциклазы
4. активация аденилатциклазы
5. активация фосфолипазы-А2
22. Как изменяется показатель окислительного фосфорилирования при механическом повреждении клетки?
1. уменьшается 2. не изменяется 3. увеличивается
23. Укажите показатели повреждения клетки:
1. уменьшение рН клетки
2. увеличение мембранного потенциала
3. снижение мембранного потенциала
4. увеличение внеклеточной концентрации ионов калия
5. уменьшение внутриклеточной концентрации ионов натрия
6. увеличение внутриклеточной концентрации ионов натрия
7. уменьшение внутриклеточной концентрации ионов кальция
8. увеличение внутриклеточной концентрации ионов кальция
24. Измерения внутриклеточной концентрации ионов натрия и калия в двух соседних миокардиальных клетках дали следующие результаты:

| клетка А | K^+ - 155 mM | Na^+ - 12 mM |
| клетка Б | K^+ - 100 mM, | Na^+ - 40 mM |

В какой клетке должны обнаруживаться признаки набухания?
1. в клетке А
2. в клетке Б

25. Укажите прямые последствия снижения pH в поврежденной клетке:
1. активация Na /K -АТФаз
2. активация лизосомальных фосфолипаз и протеаз
3. снижение синтеза ДНК
4. угнетение гликолиза
5. изменение конформационных свойств мембранных белков
6. повышение проницаемости лизосомальных мембран

26. Укажите причины гипергидратации клетки:
1. увеличение гидрофильности цитозольных белков
2. уменьшение активности Ca$^{2+}$-АТФазы
3. уменьшение активности Na$^+/K^+$-АТФазы
4. уменьшение активности гликогенсинтетазы
5. интенсификация ПОЛ

27. Какие из перечисленных изменений метаболизма сопровождаются быстро-развивающимся нарушением барьерных свойств цитоплазматической мембраны?
1. активация гликолиза
2. активация фосфофруктозиназы
3. угнетение синтеза белка
4. активация ПОЛ
5. активация фосфолипазы

28. Какие из перечисленных ниже веществ обладают свойствами антиоксидантов?
1. токоферолы
2. миелопероксидаза
3. глютатионпероксидаза
4. каталаза
5. восстановленный глутатион
6. щелочная фосфатаза

29. Укажите органеллы, защищающие поврежденную клетку от чрезмерного накопления ионизированного кальция:
1. ядро
2. лизосомы
3. митохондрии
4. рибосомы
5. эндолеплазматический ретикулум
6. аппарат Гольджи

45
Дополните ответы

1. Различают следующие виды повреждения клеток:
 1. острое 2. ... 3. ... 4. ...

2. К морфологическим признакам повреждения клеток относятся:
 1. нарушение целостности цитоплазматической мембраны
 2. набухание митохондрий 3. ... 4. ... 5. ...

3. К функциональным признакам повреждения клеток относятся:
 1. уменьшение подвижности клеток
 2. нарушение и прекращение деления клеток
 3. ... 4. ... 5. ... 6. ...

4. Следствием изменений биохимических процессов в поврежденных клетках являются:
 1. нарушение синтеза белка
 2. уменьшение содержания АТФ
 3. ... 4. ... 5. ... 6. ... 7. ...

5. Клетка повреждается при:
 1. нарушении механизмов энергетического обеспечения клетки
 2. повреждении мембран клетки и внутриклеточных структур
 3. ...

6. При ишемическом повреждении клетки возникают следующие компенсаторные изменения внутриклеточного метаболизма:
 1. мобилизация гликогена
 2. мобилизация АТФ 3. ... 4. ...

7. Ограничение потребления энергии при ишемическом повреждении клетки осуществляется за счет:
 1. снижения функциональной активности 2. ... 3. ...

8. Увеличение концентрации свободного ионизированного кальция внутри клетки вызывает:
 1. активацию фосфолипазы А₂ 2. ... 3. ... 4. ...

9. Повышение внутриклеточного содержания Ca²⁺ при повреждении клеток может быть связано с:
 1. увеличением поступления Ca²⁺ в клетку 2. ... 3. ...

10. Хелаторами Ca цитоплазмы являются:
 1. кальмодулин 2. ... 3. ...

11. Повреждение липидных компонентов мембран клетки возникает при:
 1. перекисном окислении ненасыщенных жирных кислот и фосфолипидов
 2. активации мембраносвязанных фосфолипаз 3. ... 4. ... 5. ...

12. К системе защиты клетки от повреждающего действия свободных радикалов относятся:
 1. супероксиддисмутаза 2. ... 3. ...

13. Пора, проницаемая для воды и ионов, образуется в цитоплазматической мембране при:
 1. перекисном окислении фосфолипидов
2. активации мембраносвязанных фосфолипаз
3. ... 4. ... 5. ...

14. К неспецифическим проявлениям повреждения клеток относятся:
 1. набухание клеток
 2. нарушение проницаемости мембраны клеток
 3. ... 4. ... 5. ... 6. ...

15. Изменения рН в клетке при ее повреждении обусловлены следующими внутриклеточными процессами:
 1. активацией протеолиза 2. ... 3. ... 4. ...

16. Перечислите свободнорадикальные соединения, способные инициировать перекисное окисление липидов:
 1) ... 2) ... 3) ... 4) ...

17. Перечислите основные механизмы повреждения мембран клетки:
 1) ... 2) ... 3) ... 4) ... 5) ...

18. Перечислите основные механизмы увеличения внутриклеточного содержания ионов кальция при ишемическом повреждении клетки:
 1) ... 2) ... 3) ... 4) ... 5) ...

19. Нарушение регуляции внутриклеточных процессов может развиться на уровне:
 1) ... 2) ... 3) ...

20. Нарушение восприятия клеткой внешних сигналов может быть вызвано:
 1) ... 2) ... 3) ... 4) ...

Правильные ответы:

Тесты I уровня

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2,3,4,5,6,9</td>
<td>17</td>
<td>1,2,4,7</td>
<td>25</td>
<td>2,3,4,5,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>a) 4 6) b)</td>
<td>18</td>
<td>1</td>
<td>26</td>
<td>1,2,3,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>11</td>
<td>5,6,7,8,9</td>
<td>19</td>
<td>2,3,5</td>
<td>27</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>12</td>
<td>1,2,4</td>
<td>20</td>
<td>2,3,6</td>
<td>28</td>
<td>1,3,4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>13</td>
<td>3-4-2-1-5-6</td>
<td>21</td>
<td>1,2,5</td>
<td>29</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>14</td>
<td>1,2,3,6</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>15</td>
<td>1,2,4,5</td>
<td>23</td>
<td>1,3,4,6,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,3,4,7,8,9,1</td>
<td>16</td>
<td>1,3,4,5,6</td>
<td>24</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Тесты II уровня

1. хроническое, обратимое, необратимое, первичное, вторичное
2. разрывы ядерной оболочки, повреждение мембраны лизосом, нарушение целостности ЭР, набухание клетки
3. повышение проницаемости цитоплазматической мембраны к макромолекулам, увеличение сорбционных свойств клетки, снижение мембранного потенциала, нарушение метаболизма
4. ацидоз цитоплазмы, уменьшение содержания пуринов, гипергидратация, снижение мембранного потенциала, увеличение хемилюминесценции, уве-
личение содержания в клетке натрия и кальция, утечка калия, повышение активности трансамина, ЛДГ, КФК в плазме крови
5. нарушение механизмов, контролирующих пластическое обеспечение клетки и деятельность ее ядра, повреждение рецепторного аппарата и системы вторичных мессенджеров
6. мобилизация креатинфосфата, триглицеридов, активация гликолиза
7. ограничения транспорта ионов, снижения химических процессов синтеза, ограничения подвижности клетки
8. активацию ПОЛ, увеличение выхода К⁺ из клетки, гипергидратацию клетки
9. нарушением возврата ионов кальция в ЭР, снижением кальцийаккумулирующей функции митохондрий
10. тропонин, парвальбумин, фосфоламбан
11. увеличении концентрации свободного ионизированного кальция внутри клетки, действиях детергентов, иммунных комплексов и комплемента, амфифильных соединений, некоторых антибиотиков осмотическом растижении
12. каталаза, глутатионпероксидаза
13. активации комплемента, действиях детергентов и амфифильных соединений
14. снижении процесса окислительного фосфорилирования, ацидоз, нарушение электролитного состава клетки, снижение мембранного потенциала
15. активацией липолиза, гликолиза, нарушением окисления СЖК
16. ОГ²НО₂⁻, О₂⁻, алкильные радикалы, перекисные радикалы
17. активацией ПОЛ, активация мембраносвязанных фосфолипаз и гидролаз лизосом, повреждение иммунными комплексами, осмотическое, механическое
18. снижение активности Са²⁺-АТФаз митохондрий и ЭР, нарушение синтеза Са²⁺-связывающих белков, нарушение Na⁺/Са²⁺-ионообменника, увеличение поступления Са²⁺ в клетку вследствие повышения проницаемости цитоплазматической мембраны, нарушения функции митохондрий.
19. рецепторного аппарата клетки, вторичных мессенджеров, метаболических реакций.
20. повреждением рецепторов, изменением их конформации, уменьшением плотности рецепторов на поверхности клетки, блокадой рецепторов.
Экзаменационные вопросы
Вопросы, входящие в экзаменационный программмоконтроль:
1. Какие изменения метаболизма сопровождаются быстро развивающимся нарушением барьерных свойств цитоплазматической мембраны?
2. Какие изменения внутриклеточного метаболизма относятся к компенсаторным при ишемическом повреждении клетки?
3. Какие показатели свидетельствуют о повреждении трансмембранных ионных насосов клетки?
4. Назовите последствия активации ПОЛ клеточных мембран.
5. Укажите факторы, защищающие клетку от возможного повреждения свободными радикалами.
6. Каковы последствия увеличения содержания свободного ионизированного кальция в клетке.
7. Укажите показатели повреждения клетки.
8. Укажите прямые последствия снижения рН в поврежденной клетке.
9. Укажите причины гипергидратации клетки.

Вопросы, входящие в экзаменационные билеты:
1. Повреждение клеток. Основные формы повреждения. Специфические и неспецифические проявления повреждения клеток. Примеры.
2. Механизмы ишемического повреждения клеток
3. Роль ионизированного кальция в механизме повреждения клетки.
4. Роль перекисного окисления липидов в повреждении клеток.

ОГЛАВЛЕНИЕ

Список сокращений .. 3
Введение. Актуальность темы ... 4
Основные вопросы, подлежащие разбору 4
Вопросы и задания на проверку исходного уровня 5
Информационный материал
 Виды повреждений клеток ... 6
 Механизмы повреждения клеточных мембран 10
 Нарушение механизмов энергетического обеспечения клетки 22
 Нарушение механизмов, контролирующих пластическое обеспече-
 ние клетки и деятельность ядра 33
 Повреждение рецепторного аппарата клетки и внутриклеточных
 механизмов регуляции ее функций 35
Список рекомендуемой литературы 41
Вопросы для самоконтроля ... 42
Экзаменационные вопросы ... 49
Молекулярные механизмы повреждения клеток

Методические разработки для самостоятельной работы студентов лечебного и педиатрического факультетов.
Под редакцией профессора Г.В. Порядина
Научный редактор Ж.М. Салмаси

Гарнитура Таймс Объем 4,5 уч.-изд. л.
Тираж 200 экз.
РГМУ, Москва, 117437, Островитянова, 1. 4223