МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.И. ПИРОГОВА» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

(ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России)

Утверждено

Проректор по послевузовскому и дополнительному образованию

/О.Ф. Природова/

ПРОГРАММА

вступительного испытания

по специальной дисциплине для поступающих на обучение по программам подготовки научных и научно-педагогических кадров в аспирантуре

Группа научных специальностей: 1.4. «Химические науки» Научная специальность: 1.4.16. «Медицинская химия»

Структура вступительного экзамена

Форма проведения -устный опрос. Результат по билетам оценивается по 5 балльной шкале. Итоговая оценка выставляется комиссией на основе оценки за каждый вопрос.

Оценка уровня знаний (баллы):

Каждый вопрос оценивается по пятибальной шкале.

"Отлично" – 5 баллов (по 5-балльной шкале);

Критерии оценивания

	Баллы
Ответ полный без замечаний, продемонстрировано рабочее знание предмета.	5
Ответ полный, с незначительными замечаниями	4
Ответ не полный, существенные замечания	3
Ответ на поставленный вопрос не дан	0-2

[&]quot;Хорошо" - 4 балла (по 5-балльной шкале);

[&]quot;Удовлетворительно" – 3 балла (по 5-балльной шкале);

[&]quot;Неудовлетворительно" - 0-2 балла (по 5-балльной шкале).

Содержание

- Электронное строение органических соединений
- Гибридизация
- Локализованные и делокализованные связи. Примеры соединений. Сопряжение. Примеры соединений с различным типом сопряжения
- Ароматичность. Бензоидные и небензоидные ароматические системы. Примеры соединений
- Электронные эффекты заместителей. Примеры влияния электронных эффектов на примере конкретной реакции
- Кислотность и основность органических соединений. Примеры влияния различных факторов на эти свойства
- Региоселективность радикальных и электрофильных реакций на примере углеводородов
- Нуклеофильность. Примеры реакций нуклеофильного замещения у sp3- и sp2гибридизованного атома углерода
- Реакции циклоприсоединения. Применение реакции диенового синтеза
- Двойственная реакционная способность СН-кислотность органических соединений. Типа реакций, связанных с наличием СН-кислотного центра
- Явление таутомерии. Примеры таутомерных систем
- Классы органических соединий. Электронное строение, способы получения и химические свойства: Алканы. Алкены. Алкадиены. Алкины. Циклоалканы. Ароматические углеводороды. Галогенопроизводные углеводородов. Спирты. Фенолы. Органические соединения серы. Альдегиды и кетоны. Карбоновые кислоты. Галогенангидриды и ангидриды кислот. Сложные эфиры. Амиды и нитрилы кислот. Угольная кислота и ее производные. Сульфокислоты и их функциональные производные. Амины. Диазо- и азосоединения. Гидроксикислоты. Оксокислоты. Аминокислоты. Пятичленные гетероциклические соединения. Шестичленные гетероциклические соединения
- Соотнесите спектральные (ИК- и ПМР) данные со структурой данного вещества:
- 1,3-Диэтилбензол; 1-Бромоэтилбензол; 1-Бромо-3-фенилпропан; 1-Фенилэтанамин-1; 2-(4-Гидроксифенил) этанол; 2-(4-Нитрофенил) этанол; 2,3,3-Триметилбутен-1; 2,3-Диметиланилин; 2-Аминомасляная кислота; 2-Фенилпропанол-1; 2-Хлоро-4-метилфенол; 2-Хлоропропанол-1; 2-Хлоропропановая кислота; 3-Метил-4-нитрофенол; 3-Хлоропропантиол-1; 3-Хлоропропионовая кислота; 4-Метилфеноксиуксусная кислота; 4-Формилметилбензоат; 5-Хлоропентин-1; N-бензилметиламин; α-Ацетоксиакрилонитрил; Акрилонитрил; Акролеин; Аллиловый спирт; Бутен-3-овая кислота; Винилацетат; Винилфенилсульфид; Винилэтиловый эфир; Диэтилфумарат; Кротоновая кислота; Пентадиен 1,4; Пентанамин-2; Пропантиол-1; Пропантиол-2; Пропионилхлорид; 3-Фенилпропиналь; Циклогексадиен-2,4; Этилбутират
- Изобразите схему образования а- и b-аномеров D-глюкопираноз в процессе циклооксотаутомерии. Укажите гликозидную гидроксигруппу. Напишите уравнение реакции взаимодействия данного углевода с разбавленной HNO3. Напишите уравнение реакции образования хелатного комплекса этаноламина с гидроксидом меди
- Изобразите структурную формулу трипептидаТуг-Asp-Arg. Укажите пептидные связи, С- и N-конец. Напишите уравнение реакции гидролиза данного пептида в щелочной среде. Напишите уравнение реакции гидролиза данного пептида в щелочной среде

- 15 Напишите уравнение реакции гидролиза дезоксицитидин-5'-дифосфата. Укажите N-гликозидную связь. Изобразите таутомерные формы образующегося азотистого основания
- Изобразите структурную формулу фосфатидилэтаноламина, содержащего остатки линоленовой и пальмитиновой кислот, а также уравнение его гидролиза. Укажите сложноэфирные связи. Изобразите конфигурацию олеиновой кислоты
- Приведите схему получения вещества: двухатомного спирта восстановлением соответствующего сложного эфира двухосновной кислоты
- Приведите схему получения вещества: алкил- или диалкилмалоновой кислоты из соответствующей монокарбоновой с использованием цианида натрия в три стадии
- Приведите схему получения вещества: а-гидроксикислоты циангидринным методом
- Приведите схему получения вещества: α-кетокислоты с использованием цианида калия
- Приведите схему получения вещества: метилкетона или замещенной кислоты из ацетоуксусного эфира
- Молекулярный спектральный анализ в ультрафиолетовой и видимой области спектра. Сущность метода. Основные законы светопоглощения. Принципиальная схема получения спектра погло¬щения
- Методы абсорбционного анализа (колориметрия, фотоэлектроколориметрия, спектрофотометрия). Количественный фотометрический анализ. Сущность метода, особенности дифференциального фотометрического анализа
- ИК спектроскопия. Сущность метода
- Люминесцентный анализ. Сущность метода
- Флуоресцентный анализ. Природа флуоресценции. Основные характеристики и закономер¬ности люминесценции. Применение флуоресцентного анализа.
- Хроматография, сущность метода
- Газожидкостная хроматография. Понятие о теории метода (параметры удерживания, параметры разделения, эффективность колонки, влияние температуры на разделение)
- Высокоэффективная жидкостная хроматография.
- Электрохимические методы анализа. Общие понятия. Классификация электрохимических методов анализа. Методы без наложе¬ния и с наложением внешнего потенциала; прямые и косвенные электрохимические методы