

National University of Science and Technology

Ион-проводящая микроскопия в высокоскоростном скрининге лекарственных средств in vitro

Ерофеев Александр Сергеевич,

к.ф.-м.н

Nanopipette Probe

Scanning ion conductance microscopy

Prof. Korchev

SICM imaging of live cells

SICM imaging of live cells

40 x 40 um Time of measurement 24 h

Fast microvillar dynamics (50 sec/frame)

7.0 µ 0.0 µ

Scanning Surface Confocal Microscope

Polyoma virus capsids

Dose response test

2) Stimulation

3) Pain-killer efficiency detection

Drug response for 1 second

Automated patch clamp

Nanoelectrode fabrication

Carbon Nanoelectrode

Nanoelectrode Functionalization

Oxygen Detection in Brain Slices

Intracellular Measurements in Melanoma Cells

[Electrochemical Nanoprobes for Single-Cell Analysis ACS Nano, Vol 8, №1, P. 875-884]

Method for rapid screening of magnetic nanoparticles toxicity

Magnetite nanoparticles in medicine:

• Contrast agent for MRI:

• Delivery of medicines

• Hyperthermia

The mechanism of toxicity of magnetite:

Production of platinized electrodes with increased adhesion of platinum

Production of platinized electrodes with increased adhesion of platinum

Cyclic voltammograms in 1mM ferrocene methanol in PBS of a nanoelectrodes: black graph – disk shape initial carbon electrode; blue graph – electrode after etching in NaOH solution; yellow graph – platinized electrode.

SEM images of platinized electrode is presented (a-100x, b – 50000x). In figure b shown zones of EDX analysis. Platinum was detected only in zone 1 on the tip of electrode.

Intracellular ROS Measurements after incubation with NP

Cells were incubated in HBSS buffer with 8,53 ug/ml Fe3O4 Nanoparticles (10 nm)

Microphotograph of intracellular ROS measurements

Representative current traces of a nanoelectrode polarized at +800 vs Ag/AgCl inside and outside HEK293 cells. Red and blue arrows indicated, respectively, the moment of penetration and retraction

Novel Method of Toxicity Screening of NP

Erofeev et. al. Scientific Reports. 2018

ROS generation by photoactivation of Riboflavin with UV light

Intracellular Measurements of ROS Production by Photoactivation of Riboflavin

With riboflavin

Without riboflavin

Melanoma (Mel_IL) cells were incubated in riboflavin solution for 30 min

pH Nanopipette Sensor

ROS, pH and O2 Measurements in Spheroids (U-87 MG)

Electrochemical copper sensor

In situ analysis of metabolites

Thank You!

Acknowledgement: Prof. Y. Korchev (Imperial College London) Sir C. Edwards (ICAPPIC) Prof. A. Majouga (University of Chemical Technology of Russia) Dr. P. Gorelkin (Lomonosov Moscow State University) Dr. R. Akasov (Institute of Bioorganic Chemistry) Dr. A. Alova (Lomonosov Moscow State University) Dr. P. Actis (University of Leeds)

