# РАЗРАБОТКА ФАРМАКОКИНЕТИЧЕСКОГО КАЛЬКУЛЯТОРА И ИСПОЛЬЗОВАНИЕ ЕГО ДЛЯ ЭКСПЕРИМЕНТАЛЬНЫХ ФАРМАКОКИНЕТИЧЕСКИХ ИССЛЕДОВАНИЙ НОВОГО НЕСТЕРОИДНОГО ПРОТИВОВОСПАЛИТЕЛЬНОГО СРЕДСТВА ИЗ ГРУППЫ ПРОИЗВОДНЫХ ТИАДИАЗОЛА МЕТОДОМ ВЭЖХ-МС/МС

• Автор: Варпетян Эдуард Эмильевич, аспирант кафедры молекулярной фармакологии и радиобиологии имени академика П.В. Сергеева Российского национального исследовательского медицинского университета имени Н.И. Пирогова.

Электронный адрес: science55569@mail.ru

## Актуальность

 Нестероидные противовоспалительные средства являются одними из наиболее востребованных лекарственных препаратов на фармацевтическом рынке (рис. 1).

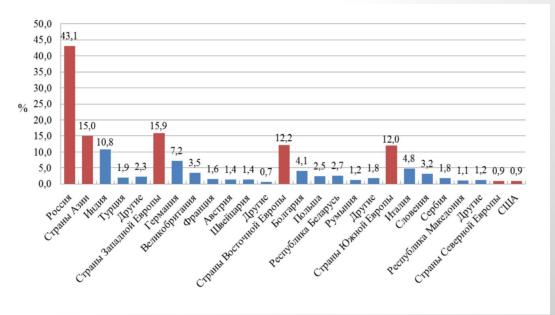



Рис. 1. Сегментация зарегистрированных НПВП по странам производителям

• В процессе фармакокинетических исследований необходим расчет целого ряда фармакокинетических параметров. Для облегчения и ускорения подобных расчетов целесообразным является использование фармакокинетических калькуляторов. Существенным недостатком существующих фармакокинетических калькуляторов является необходимость оплаты за их использование, так как версии бесплатного пользования ограничены функционалом.

#### Цель

• Разработка фармакокинетического калькулятора и использование его для экспериментальных фармакокинетических исследований нитробензоламида — нового нестероидного противовоспалительного средства из группы производных тиадиазола методом ВЭЖХ-МС/МС.

#### Задачи

- Рассчитать дозы НПВС для внутривенного и внутрижелудочного введения индивидуально для каждого подопытного животного.
- Забрать кровь и произвести пробоподготовку.
- Определить содержание нитробензоламида в плазме крови.
- Сбор фармакокинетических параметров для разработки фармакокинетического калькулятора на базе пакета программ Microsoft Office Excel 2013.
- С помощью разработанного фармакокинетического калькулятора рассчитать основные фармакокинетические параметры для нового производного тиадиазола нитробензоламида.

- Объектом исследования явился нитробензоламид новое производное 1,3,4-тиадиазола, синтезированное в ОАО «ВНЦ БАВ» (г. Старая Купавна) проф. С.Я. Скачиловой (рис. 2).
- По внешнему виду порошок белого цвета, без запаха, растворим в воде, практически не растворим в органических растворителях, легко растворим в ацетонитриле.

Рис. 2. Химическая структура нитробензоламида – нового нестероидного противовоспалительного средства из группы производных тиадиазола (химическая структура 2-(5-этил-1,3,4-тиадиазолил) амид 4-нитробензойной кислоты; молярная масса 278,3 г/моль).

- За 12 часов до начала и в течение эксперимента подопытных животных не кормили, не ограничивая им доступ к воде. Перед постановкой эксперимента животные проходили карантин в течение 10-14 дней.
- Фармакокинетические исследования проводили на 6 кроликах породы русский великан массой 3,9±0,2 кг. Подопытных животных содержали в стандартных условиях вивария: при двенадцатичасовом режиме освещения и доступе к воде ad libitum.

5

- Исследование проводили по открытой рандомизированной перекрёстной схеме. Период вымывания препарата между этапами составил 7 дней.
- Нитробензоламид вводили подопытным кроликам однократно внутрижелудочно (через зонд) в дозе 10 мг/кг в 20 мл 2% слизи крахмала или внутривенно в дозе 1 мг/кг в 0,33% растворе димексида. Забор крови осуществляли через катетер из вены уха в обработанные натриевой солью гепарина пробирки в объеме 1 мл до начала исследования и через 0,016; 0,08; 0,16; 0,25; 0,5; 0,75; 1; 2; 3; 4; 6; 8;10; 12; 24 и 36 часов после введения исследованных соединений (рис. 3).



Рис. 3. Забор крови через катетер из вены уха подопытного кролика.

- Продолжительность мониторинга концентрации нитробензоламида в плазме крови в среднем в 5 раз превышала период полувыведения (T1/2).
- Кровь центрифугировали в течение 10 минут при скорости 3000 оборотов в минуту. В процессе центрифугировали происходило осаждение форменных элементов крови. Плазму крови с помощью пипеток переносили в химически чистые промаркированные пробирки (рис. 4)



Рис. 4. Получение плазмы крови методом центрифугирования.

- Полученную плазму крови хранили при температуре -40°C.
- Для пробоподготовки был выбран метод осаждения белков плазмы крови ацетонитрилом. Для этого к 450 мкл исследуемого образца плазмы крови добавляли 100 мкл стандартного раствора

ацексазоламида в 50% ацетонитриле и 450 мкл ацетонитрила с 0,1% муравьиной кислоты. Для приготовления бланка к 450 мкл плазмы крови добавляли 500 мкл ацетонитрила с 0,1% муравьиной кислоты и 50 мкл воды деионизированной.

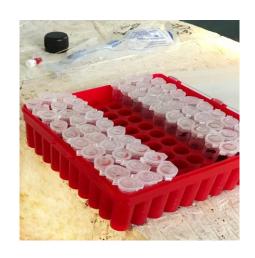



Рис. 5. Планшеты с промаркированными пробирками, содержащими гепаринизированную кровь.

Пробы встряхивали на вортекс-шейкере, термостатировали 20 минут при температуре 37 °C, далее центрифугировали в течение 10 минут при 18000 об/мин, после чего надосадочную жидкость переносили в виалы для хроматографа.

Количественное определение нитробензоламида в плазме крови осуществляли валидированным методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием (ВЭЖХ-МС/МС) (Попов Н.С., Малыгин А.С., Демидова М.А., 2017). Исследование осуществляли с помощью высокоэффективного жидкостного хроматографа Agilent 1260 Infinity II (Agilent Technologies, ФРГ).

В качестве детектора использовали тройной квадрупольный масс-спектрометр AB Sciex QTrap 3200 MD (AB Sciex, Сингапур) с электрораспылительным источником ионов (Turbo V с зондом TurboIonSpray). Калибровку масс-спектрометра проводили с помощью тестового раствора резерпина в концентрации  $6.1 \times 10-2$  мг/л.



Рис. 6. Холодильное оборудование для хранения биологического материала при температуре -40°C.

Валидация методики количественного определения нитробензоламида в плазме крови была проведена в соответствии с требованиями Общей фармакопейной статьи ОФС.1.1.0012.15 Валидация аналитических методов, а также с использованием отечественных и международных рекомендаций по валидации биоаналитических методов.

Для хроматографирования использовали следующие условия: неподвижная фаза – аналитическая колонка Agilent InfinityLab Poroshell 120 EC-C18 2,7 мкм 4,6×100 мм при температуре 40 °C; подвижная фаза – смесь ацетонитрила и воды деионизированной в соотношении 30:70 с добавлением 0,1% муравьиной кислоты; скорость потока подвижной фазы – 0,6 мл/мин; объем вводимой пробы – 10 мкл; общее время изократического элюирования – 4 минуты. При использовании данных условий хроматографии время удерживания для аналита составило 2,7 минуты.

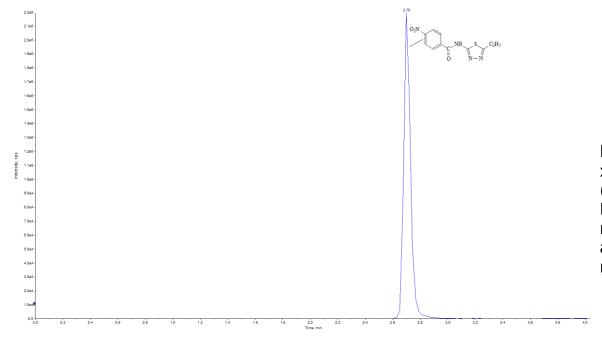



Рис . 7. Полная ионная хроматограмма нитробензоламида (колонка InfinityLab Poroshell 120 EC-C18 2,7 мкм  $4,6\times100$  мм, изократическое элюирование 30% ацетонитрила, скорость потока 0,6 мл/мин).

- Детектирование нитробензоламида осуществляли массспектрометрически, используя электрораспылительный источник ионов (Turbo V с зондом TurboIonSpray).
- Для получения устойчивой масс-спектрограммы были использованы следующие условия детектирования: отрицательная поляризация, напряжение электроспрея 5500,0 В, потенциал декластеризации 280,0 В при давлении газа завесы 20,0 рsi и газа распыления 40,0 рsi, скорость 10 мкл/мин. Потенциал ввода для всех ионов составил -4,5 В, диапазон сканирования 200 300 Да.

|      |                     | Исх                          | одные д | цанные |      |      |      |         |  |
|------|---------------------|------------------------------|---------|--------|------|------|------|---------|--|
| Фаза | № животного         | 1                            | 2       | 3      | 4    | 5    | 6    | Среднее |  |
|      | Время, ч            | Концентрация в крови, мкг/мл |         |        |      |      |      |         |  |
| α    | 0,004               | 56,2                         | 51,1    | 58,8   | 54,3 | 50,7 | 58,8 | 54,9833 |  |
|      | 0,016               | 40,2                         | 43      | 46,8   | 44,2 | 41,9 | 44,4 | 43,4167 |  |
|      | 0,083               | 20,4                         | 23,8    | 25,2   | 26,1 | 20,6 | 24,2 | 23,3833 |  |
|      | 0,25                | 6,1                          | 7,3     | 7,8    | 6,9  | 6,5  | 6,3  | 6,81667 |  |
|      | 0,5                 | 5,6                          | 5,9     | 5,2    | 4,2  | 4,5  | 4,4  | 4,96667 |  |
|      | 0,75                | 4,5                          | 4,5     | 4,7    | 4,2  | 4,1  | 3,6  | 4,2666  |  |
|      | 1                   | 3,6                          | 3,8     | 3,5    | 3,4  | 3,7  | 3,4  | 3,5666  |  |
| β    | 1,5                 | 2,4                          | 2,7     | 3,64   | 4,8  | 2,8  | 3,6  | 3,32333 |  |
|      | 2                   | 2,8                          | 2,1     | 3,5    | 4,1  | 2,7  | 3,4  | 3,1     |  |
|      | 3                   | 2,62                         | 2,1     | 2,8    | 3,1  | 2,6  | 2,9  | 2,6866  |  |
|      | 4                   | 2,5                          | 2,3     | 2,3    | 2,5  | 2,2  | 2,5  | 2,38333 |  |
|      | 6                   | 2,1                          | 2,3     | 2,2    | 2,4  | 2,1  | 2,2  | 2,2166  |  |
|      | 8                   | 1,8                          | 1,9     | 2      | 2,1  | 2    | 1,9  | 1,95    |  |
|      | 10                  | 1,6                          | 1,7     | 1,9    | 1,8  | 1,7  | 1,4  | 1,68333 |  |
|      | 12                  | 1,3                          | 1,5     | 1,6    | 1,4  | 1,4  | 1,25 | 1,40833 |  |
|      | 24                  | 0,1                          | 0,1     | 0,1    | 0,1  | 0,1  | 0,1  | 0,:     |  |
|      | Масса животного, кг | 3,52                         | 3,86    | 3,44   | 3,56 | 3,61 | 3,72 | C0      |  |
|      | Доза, мкг/кг        |                              |         | 10     | 00   |      |      | K21     |  |
|      | Доза, мкг           | 3520                         | 3860    | 3440   | 3560 | 3610 | 3720 | Ke      |  |

Рис. 8. Ячейки фармацевтического калькулятора с первичными данными (концентрация нитробензоламида в плазме крови в различные временные интервалы после внутривенного введения).

- На первом этапе исследования нами был разработан фармакокинетический калькулятор на базе пакета программ Microsoft Office Excel 2013. С этой целью в разработанном калькуляторе были предусмотрены ячейки для ввода первичных данных (концентрация исследуемого вещества в крови в определенные периоды времени) (рис. 8).
- Для всех данных введены формулы, позволяющие осуществлять статистическую обработку данных: расчет среднеарифметических (Mean) и среднегеометрических (GMean) значений, стандартного отклонения (SD), коэффициента вариации (CV, %), медианы (Median) и их интервальной оценки (Доверит, L-90%, U-90%), максимальное (Max) и минимальное (Min) значение.

 На основании данных о содержании нитробензоламида в крови были построены фармакокнитеческие кривые зависимости концентрации нитробензоламида в плазме крови от времени (рис. 9)

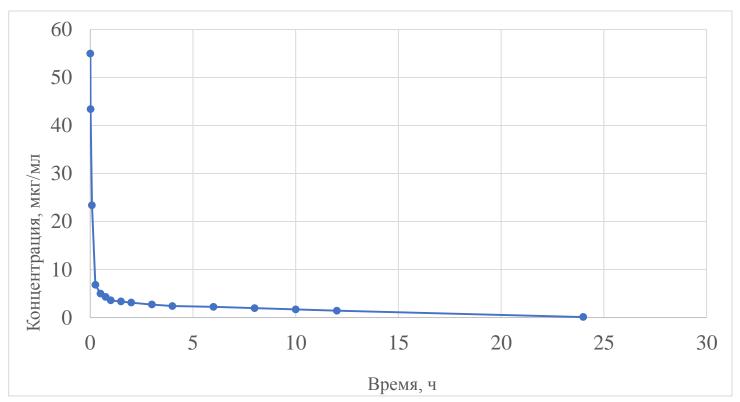



Рис. 9. Фармакокинетическая кривая зависимости концентрации нитробензоламида в плазме крови от времени при его внутривенном введении в дозе 1 мг/кг.

- Фармакокинетические параметры определяли внемодельным способом.
- Рассчитаны следующие внемодельные параметры:  $AUC_{0\to\infty}$  и  $AUC_{0\to t}$  (площади под фармакокинетической кривой);  $T_{1/2}$  (период полувыведения),  $C_{max}$  (максимальная концентрация),  $t_{max}$  (время достижения максимальной концентрации), CI (клиренс),  $K_{el}$  (константа элиминации),  $V_{d}$  (кажущийся объем распределения), MRT (время удерживания вещества в плазме), 95% CI (границы 95% доверительного интервала).
- На рис.10 Представлены результаты расчета площадей под фармакокинетической кривой в различные временные интервалы  $AUC_{0\to t}$  и  $AUC_{0\to \infty}$ , клиренса (CI) и объема распределения ( $V_d$ ).

| Y         | Z        | AA       | AB       | AC                   | AD       | AE       | AF       |
|-----------|----------|----------|----------|----------------------|----------|----------|----------|
|           | AUC      |          |          |                      |          |          |          |
|           | 1        | 2        | 3        | 4                    | 5        | 6        | Среднее  |
|           |          |          |          |                      |          |          |          |
|           |          |          |          |                      |          |          |          |
|           | 0,5784   | 0,5646   | 0,6336   | 0,591                | 0,5556   | 0,6192   | 0,5904   |
|           | 2,0301   | 2,2378   | 2,412    | 2,35505              | 2,09375  | 2,2981   | 2,2378   |
|           | 2,21275  | 2,59685  | 2,7555   | 2,7555               | 2,26285  | 2,54675  | 2,5217   |
|           | 1,4625   | 1,65     | 1,625    | 1,3875               | 1,375    | 1,3375   | 1,472917 |
|           | 1,2625   | 1,3      | 1,2375   | 1,05                 | 1,075    | 1        | 1,154167 |
|           | 1,0125   | 1,0375   | 1,025    | 0,95                 | 0,975    | 0,875    | 0,979167 |
|           | 1,5      | 1,625    | 1,785    | 2,05                 | 1,625    | 1,75     | 1,7225   |
|           | 1,3      | 1,2      | 1,785    | 2,225                | 1,375    | 1,75     | 1,605833 |
|           | 2,71     | 2,1      | 3,15     | 3,6                  | 2,65     | 3,15     | 2,893333 |
|           | 2,56     | 2,2      | 2,55     | 2,8                  | 2,4      | 2,7      | 2,535    |
|           | 4,6      | 4,6      | 4,5      | 4,9                  | 4,3      | 4,7      | 4,6      |
|           | 3,9      | 4,2      | 4,2      | 4,5                  | 4,1      | 4,1      | 4,166667 |
|           | 3,4      | 3,6      | 3,9      | 3,9                  | 3,7      | 3,3      | 3,633333 |
|           | 2,9      | 3,2      | 3,5      | 3,2                  | 3,1      | 2,65     | 3,091667 |
|           | 8,4      | 9,6      | 10,2     | 9                    | 9        | 8,1      | 9,05     |
| AUC0-∞    | 40,50793 | 42,40069 | 45,92747 | 45,92786             | 41,28218 | 41,54805 | 42,93236 |
| C1        | 86,89656 | 91,03626 | 74,9007  | 77,51287             | 87,44692 | 89,53489 | 84,5547  |
|           |          |          |          |                      |          |          |          |
| Vd(центр) | 64,78563 | 74,44349 | 58,63815 | 66,01294<br>514,5240 | 69,42338 | 64,82552 | 66,35485 |

Рис. 10. Результаты фармакокинетических исследований: расчет значений площади под фармакокинетической кривой, клиренса и объема распределения. 14

• Разработанный калькулятор позволяет оценивать фармакокинетические параметры модельным методом на основе 2-хкамерной модели.

| R                                    | S        | Т        | U        | V        | W        | Х        |  |
|--------------------------------------|----------|----------|----------|----------|----------|----------|--|
| Концентрация в переферической камере |          |          |          |          |          |          |  |
| 1                                    | 2        | 3        | 4        | 5        | 6        | Среднее  |  |
|                                      |          |          |          |          |          |          |  |
| 2,404278                             | 1,742982 | 2,172345 | 1,696303 | 2,142673 | 2,159443 | 2,053004 |  |
| 8,845407                             | 6,5294   | 8,088819 | 6,376319 | 7,925153 | 8,032108 | 7,632868 |  |
| 30,01123                             | 24,09725 | 29,00969 | 23,92027 | 27,55429 | 28,66121 | 27,20899 |  |
| 41,3631                              | 37,01176 | 42,82677 | 37,60294 | 39,11362 | 42,03334 | 39,99192 |  |
| 41,08074                             | 38,07075 | 43,37625 | 39,01794 | 39,17758 | 42,48305 | 40,53438 |  |
| 39,63164                             | 36,8668  | 41,88993 | 37,78501 | 37,84679 | 41,0243  | 39,17408 |  |
| 38,2004                              | 35,56278 | 40,35834 | 36,40403 | 36,51153 | 39,52948 | 37,76109 |  |
| 35,48923                             | 33,07387 | 37,4517  | 33,7639  | 33,97708 | 36,69323 | 35,07484 |  |
| 32,97045                             | 30,75855 | 34,75417 | 31,31412 | 31,61849 | 34,06029 | 32,57934 |  |
| 28,45649                             | 26,6028  | 29,92799 | 26,93489 | 27,38113 | 29,34764 | 28,10849 |  |
| 24,56053                             | 23,00853 | 25,772   | 23,16809 | 23,71163 | 25,28704 | 24,25131 |  |
| 18,29577                             | 17,21123 | 19,11126 | 17,14117 | 17,78205 | 18,7736  | 18,05251 |  |
| 13,62899                             | 12,87464 | 14,17198 | 12,68208 | 13,33528 | 13,93789 | 13,43848 |  |
| 10,15259                             | 9,630706 | 10,50925 | 9,382979 | 10,00052 | 10,34777 | 10,00397 |  |
| 7,562923                             | 7,204124 | 7,793152 | 6,9421   | 7,499681 | 7,682387 | 7,447394 |  |
| 1,292312                             | 1,262175 | 1,295868 | 1,138654 | 1,334027 | 1,286452 | 1,268248 |  |
| 4,706749                             | 4,774325 | 4,635284 | 4,600174 | 4,81624  | 4,653499 | 4,697712 |  |

Рис. 11. Концентрация нитробензоламида в периферической камере.

| AH                                | Al       | AJ       | AK       | AL       | AM       | AN       |  |
|-----------------------------------|----------|----------|----------|----------|----------|----------|--|
| Концентрация в центральной камере |          |          |          |          |          |          |  |
| 1                                 | 2        | 3        | 4        | 5        | 6        | Среднее  |  |
|                                   |          |          |          |          |          |          |  |
| 51,61471                          | 49,83041 | 56,16463 | 51,95754 | 49,57066 | 54,88396 | 52,33698 |  |
| 44,32207                          | 44,27297 | 49,34552 | 46,51116 | 43,00625 | 48,07336 | 45,92189 |  |
| 20,14104                          | 23,70558 | 25,02118 | 25,91898 | 20,52938 | 23,94089 | 23,20951 |  |

Рис. 12. Концентрация нитробензоламида в центральной камере.

- 2-х камерная модель представлена центральной камерой (кровь и интерстициальная жидкость) и периферической камерой (внутренние органы).
- На рис. 11 и 12 представлены результаты расчета концентрации и нитробензоламида для центральной и периферической камер.

15

• Результаты расчета фармакокинетических параметров при внутривенном введении кроликам нитробензоламида в дозе 1 мг/кг приведены на рис. 13.

| Результаты                            |             |                      |          |  |  |  |  |
|---------------------------------------|-------------|----------------------|----------|--|--|--|--|
| α, 1/4                                | 12,1506695  | AUC 0-∞, мкг*час/мл  | 42,93236 |  |  |  |  |
| β, 1/4                                | 0,14755784  | AUC 0-24, мкг*час/мл | 42,25448 |  |  |  |  |
| A 1                                   | 49,5989685  | AUC 24-∞/AUC 0-24, % | 1,609401 |  |  |  |  |
| A 2                                   | 5,09482001  |                      |          |  |  |  |  |
| <b>B</b> 1                            | -43,7682654 |                      |          |  |  |  |  |
| <b>B</b> 2                            | 43,7682654  |                      |          |  |  |  |  |
| C0, мкг/мл                            | 54,6937885  |                      |          |  |  |  |  |
| k 21, 1/4                             | 1,26205115  |                      |          |  |  |  |  |
| k 12, 1/4                             | 9,61824686  |                      |          |  |  |  |  |
| ke, 1/4                               | 1,41792932  |                      |          |  |  |  |  |
| t 1/2, 4                              | 4,69771178  |                      |          |  |  |  |  |
| V $d$ (центр) , МЛ/КГ                 | 66,3548512  |                      |          |  |  |  |  |
| V $deta$ , мл/кг                      | 573,643957  |                      |          |  |  |  |  |
| $V$ extrap , M. $\Pi/K$ $\mathcal{E}$ | 713,481463  |                      |          |  |  |  |  |
| Vss, мл/кг                            | 570,539362  |                      |          |  |  |  |  |
| Cl, мл/час*кг                         | 84,5547009  |                      |          |  |  |  |  |

Рис. 13. Результаты расчета фармакокинетических параметров при внутривенном введении кроликам нитробензоламида в дозе 1 мг/кг.

# Выводы

- Разработан фармакокинетический калькулятор для расчета фармакокинетических параметров, который можно использовать как при проведении экспериментально-исследовательской работы, так и в клинической практике для оценки изучения фармакокинетики лекарственных препаратов (оценка биоэквивалентности лекарственных препаратов, клинические фармакокинетические исследования, индивидуальный фармакокинетический профиль).
- Определено содержание нитробензоламида нового нестероидного противовоспалительного средства из группы производных тиадиазола в плазме крови кроликов при однократном внутривенном и внутрижелудочном применении с помощью валидированного метода ВЭЖХ-МС/МС.
- С помощью разработанного фармакокинетического калькулятора рассчитаны основные фармакокинетические параметры для нового производного тиадиазола нитробензоламида.