На правах рукописи

ВЛАДИМИРОВ ГЕОРГИЙ КОНСТАНТИНОВИЧ

СТРУКТУРА И ПЕРОКСИДАЗНАЯ ФУНКЦИЯ КОМПЛЕКСА ЦИТОХРОМА C С КАРДИОЛИПИНОМ В ВОДНОЙ СРЕДЕ И В НЕПОЛЯРНОМ ОКРУЖЕНИИ

03.01.02 – Биофизика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Московский государственный университет имени М.В Ломоносова»

Научный руководитель:

Владимиров Юрий Андреевич

Академик РАН, доктор биологических наук, профессор

Официальные оппоненты:

Ланкин Вадим Зиновьевич, доктор биологических наук, профессор, и.о. руководителя, главный научный сотрудник отдела биохимии свободнорадикальных процессов Научно-Исследовательского Института Клинической Кардиологии Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр кардиологии» Министерства здравоохранения Российской Федерации.

Иванов Алексей Сергеевич доктор биологических наук, профессор, заведующий лабораторией межмолекулярных взаимодействий Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича» Российской академии наук.

Ведущая организация:

Федеральное государственное бюджетное учреждение науки «Институт биохимической физики им. Н.М. Эмануэля Российской Академии Наук»

Защита диссертации состоится «__»_____2018 года в 14.00 часов на заседании Диссертационного совета Д.208.072.14 на базе ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России по адресу:117997, Москва, ул. Островитянова, д.1;

С диссертацией можно ознакомиться в Научной библиотеке ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России по адресу: 117997, Москва, ул. Островитянова, д.1; и на сайте: http//rsmu.ru

Автореферат диссертации разослан « » 2018 года

Ученый секретарь диссертационного совета:

доктор медицинских наук, профессор

Кягова Алла Анатольевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Апоптоз — запрограммированная смерть клетки, один из важных процессов в многоклеточных организмах, необходимый для поддержания жизнедеятельности тканей на всех этапах развития организма. Нарушения нормального течения процесса апоптоза приводят к развитию многих патологий (Tatton, 1999; Shapira, 1999: Lenaz, 1998), в том числе и к онкологическим заболеваниям. Согласно данным PubMed, с 2014 года публикуется не менее 4,5 тысяч статей в год, в названии которых присутствует слово «арорtosis».

Особенностью раковых клеток является то, что они способны ингибировать апоптоз. В последние годы появляется все больше и больше доказательств того, что многие (а, возможно, и все) агенты противораковой химиотерапии вызывают смерть опухолевых клеток in vitro и in vivo за счет запуска механизмов апоптоза (Hannun, 1997). К сожалению, раковые клетки быстро вырабатывают механизм выброса чужеродных, в том числе и противораковых лекарственных средств. Необходим поиск и разработка более эффективной раковой терапии. Новым подходом в борьбе с раковыми клетками может служить использование природного инициатора апоптоза – комплекса цитохрома c с кардиолипином.

Каган и сотрудники показали, что для развития апоптоза необходимо образование Цит-КЛ и проявление им пероксидазной активности. При этом, подразумевалось, что Цит-КЛ представляет из себя мембранно-связанный ЦитС. Однако недавно в нашем коллективе было показано, что существует и другая структура данного комплекса, а именно – наносфера Цит-КЛ, в которой молекула цитохрома с находится в центре и окружена монослоем молекул кардиолипина. Было сделано предположение, что в митохондриях данная наносфера может встраиваться в толщу липидного слоя мембраны, где она и осуществляет пероксидазную функцию. В подтверждение того, что такая наносфера может проникать в липидный бислой, обладающий гидрофобными свойствами, было показано, что комплекс Цит-КЛ может быть растворен в гидрофобном растворителе. Однако структурные и функциональные свойства комплекса Цит-КЛ если и были в какой-то мере изучены, то исключительно в водной фазе. Поэтому актуальным является исследование структуры и пероксидазной функции комплекса Цит-КЛ в гидрофобной среде. В этой же среде необходимо исследовать и функцию комплекса Цит-КЛ. Такой функцией является образование свободных радикалов как первичного продукта пероксидазной реакции. В нашей лаборатории были разработаны уникальные методы изучения реакций с образованием свободных радикалов, основанные на регистрации кинетики хемилюминесценции в присутствии специфических активаторов ХЛ и математическом моделировании кинетики реакций.

Применение этих методов для изучения функции комплекса Цит-КЛ в гидрофобной фазе является таким образом актуальной научной проблемой.

Цели и задачи

Получение новых данных о комплексе цитохрома c с кардиолипином (Цит-КЛ): данных о его размере, химическом составе, конформации белка в комплексе и о механизме образования им свободных радикалов в гидрофобном окружении, в котором он выполняет свою роль триггера программируемой смерти клеток — апоптоза.

Решение этой фундаментальной научной проблемы позволит приступить к созданию действующего начала противораковых средств нового типа на основе природных и синтетических белок-липидных комплексов, по структуре и действию аналогичных Цит-КЛ.

Для решения этой цели в работе были поставлены следующие задачи:

- 1. Отработать условия получения и методы изучения строения и пероксидазной активности комплекса цитохрома c с кардиолипином (Цит-КЛ) в гидрофобных растворителях.
- 2. Исследовать размеры наносфер комплекса и соотношение липид/белок в комплексах Цит-КЛ в неполярном окружении (гидрофобных растворителях) и сравнить эти данные со строением Цит-КЛ в микрокристаллических осадках и разбавленных водных растворах.
- 3. Исследовать изменения конформации цитохрома c при переходе из водного раствора в комплекс Цит-КЛ и в водно-метанольный раствор.
- 4. Исследовать возможность изучения образования свободных радикалов в липопероксидазных реакциях, катализируемых комплексом Цит-КЛ, методом хемилюминесценции, активированной изохинолизиновыми кумариновыми красителями С-525, С-334 и С-314.
- 5. Изучить образование свободных радикалов в липопероксидазных реакциях, катализируемых комплексом Цит-КЛ, методом активированной кумаринами хемилюминесценции в среде, состоящей из гидрофобного растворителя.
- 6. Изучить образование свободных радикалов в липопероксидазных реакциях, катализируемых комплексом Цит-КЛ, методом активированной кумаринами хемилюминесценции в системе, содержащей митохондриальные мембраны.
- 7. Изучить роль реакций липидной пероксидации в цитотоксическом и апоптогенном действии комплекса Цит-КЛ на обычные и лекарственно-устойчивые раковые клетки в клеточной культуре.

Теоретическая и практическая значимость работы

Данные, полученные в диссертации, позволили раскрыть механизм апоптогенного и цитотоксического действия комплекса Цит-КЛ на раковые клетки в культуре. Это явление было открыто в совместной работе группы американских и российских ученых с участием автора; оно

дает возможность в дальнейшем начать поиск противораковых агентов нового типа – белковолипидных комплексов с пероксидазной активностью, против которых раковые клетки не обладают резистентностью.

Разделы диссертации, относящиеся к строению и каталитической функции комплекса Цит-КЛ, вошли в лекционный курс по медицинской биофизике, читаемый студентам Факультета Фундаментальной медицины МГУ.

Научная новизна работы

В работе впервые было проведено систематическое изучение размера комплекса цитохрома c с кардиолипином (Цит-КЛ) в гидрофобном окружении и был выяснен механизм пероксидазных реакций, катализируемых этим комплексом. Было показано, что в гидрофобном растворителе частицы Цит-КЛ имеют преимущественно два размера около 12 и 8 нм, что совпадает с размерами наносфер в микрокристаллах комплекса, изученных ранее. Было показано, что белковая глобула в Цит-КЛ находится в частично расплавленном состоянии, что делает ее каталитически активной. Было показано, что в разбавленных водных растворах и в гидрофобном растворителе комплекс Цит-КЛ катализирует образование липидных радикалов по тому же механизму пероксидазного цикла, что другие, ранее изученные, пероксидазы. Было обнаружено, что эти же реакции протекают в мембранах митохондрий под действием добавленных извне частиц Цит-КЛ. Таким образом, были получены новые фундаментальные знания о свойствах и способе функционирования комплекса цитохрома c при апоптозе.

Положения, выносимые на защиту

- 1. Отработаны условия получения и методы изучения строения комплекса цитохрома c с кардиолипином (Цит-КЛ) в гидрофобных растворителях.
- 2. Размер частиц комплекса Цит-КЛ в неполярном окружении составляет 7.8 ± 1.0 и 12.1 ± 1.4 нм. Таким образом, частицы комплекса в неполярной среде имеют такие же размеры, как и частицы в кристаллических осадках Цит-КЛ Соотношение липид/белок в этих частицах составляет 13 и 59, соответственно.
- 3. Конформация ЦитС в комплексе Цит-КЛ, помещенном хлороформную фазу, отличается от нативной и представляет собой расплавленную глобулу, в которой разрушены железосерные связи между гемовым железом и серой метионина Met80 и увеличено расстояние от гема до остатков тирозина и триптофана. Такие же изменения происходят и в ЦитС в водно-метанольной среде. Эти изменения обратимы.
- 4. Кумариновые активаторы хемилюминесценции (С-525, С-334 и С-314), являются субстратом пероксидазной реакции, катализируемой комплексом Цит-КЛ. Однако эта реакция не сопровождается хемилюминесценцией, а сами активаторы за время типичного эксперимента по

изучению реакций Цит-КЛ разрушаются лишь частично. Поэтому все три соединения (C-314, C-334 и C-525) могут служить в качестве активаторов хемилюминесценции.

- 5. Комплекс цитохрома *с* с кардиолипином катализирует пероксидазные реакции липидов не только в водных растворах, но и в неполярном окружении, в котором комплекс, по-видимому, находится в мембранах клеток и митохондрий.
- 6. Реакции липидной пероксидации с образованием радикалов протекают при действии комплекса Цит-КЛ на митохондриальные мембраны.
- 7. Обнаруженное в совместной работе апоптотическое и цитотоксическое действия Цит-КЛ на раковые клетки обусловлено образованием липидных радикалов в липопероксидазных реакциях.

Личный вклад автора

Автор проводил все эксперименты, результаты которых представлены в диссертационной работе, кроме экспериментов на раковых клетках, которые приведены в работе в разделе «Дискуссия» со ссылкой на публикацию. Лично автором были проведены обработка и интерпретации всех полученных данных.

Апробация результатов исследования

Результаты исследования доложены в устных выступлениях на конференциях с международным участием: «II-ая Международная Конференция «Свободные радикалы в химии и жизни»» (Белоруссия, Минск, 2017), «16th International Nutrition and Diagnostics Conference» (Чехия, Прага, 2016), «9th International Conference «Biomaterials and nanobiomaterials: Recent advances safety-toxicology and ecology issues»» (Греция, Ираклион, 2018).

Апробация работы прошла на совместном заседании коллектива сотрудников кафедры Медицинской биофизики Факультета фундаментальной медицины ФГБОУ ВО МГУ им. М.В. Ломоносова, кафедры Общей и медицинской биофизики Медико-биологического факультета ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России, и сотрудников Факультета фундаментальной медицины ФГБОУ ВО МГУ им. М.В. Ломоносова.

Публикации

По теме диссертации опубликовано 6 работ: 2 статьи в рецензируемых отечественных журналах, рекомендованных ВАК, 2 статьи в международных журналах, 2 тезиса докладов.

Объем и структура работы

Диссертация изложена на 125 страницах печатного текста и состоит из введения, обзора литературы, описания материалов и методов исследования, результатов исследований и их обсуждения, выводов, списка использованной литературы. Работа иллюстрирована 5 таблицами и 36 рисунками. Указатель цитируемой литературы содержит 190 библиографических источников, в том числе 37 отечественные и 153 иностранные публикации.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Подготовка объектов исследования

Приготовление комплекса Цит-КЛ в неполярном растворителе

В основу метода приготовления раствора комплекса Цит-КЛ был положен метод, предложенный Викулиной и сотр. (2015), в который были внесены изменения.

Приготовление изолированных митохондрий

Митохондрии выделяли из печени самцов крыс линии Wistar (275±25 г) согласно методике, описанной в работе Storrie В. и сотр. (1990). Для получения митохондрий с нарушенной целостностью внешней мембраны суспензию митохондрий замораживали при –20°C, после чего размораживали и хранили при температуре 0–4°C на льду.

Методы исследования структуры цитохрома c в комплексе с кардиолипином

Спектрофотометрическое определение состояния железосерных связей в ЦитС

Измерения проводились на приборе Specord 200 (Analytik Jena, Германия).

Объем анализируемого раствора составлял 3 мл. Регистрировали спектр в области 650-750 нм. Использовали 400 мкМ раствор ЦитС в 20 мМ фосфатном буферном растворе, к которому добавляли растворы метанола различной концентрации.

Расчет поглощения железосерной связи ($A_{\text{Fe-S}}$) в области 670-728 нм производили путем вычитания поглощения, обусловленного поглощением ЦитС в более коротковолновой части спектра. Для этого для каждой пробы использовали уравнение: $A_{\text{Fe-S}} = A_{699} - (A_{670} + A_{728})/2$ (Владимиров Ю.А. и сотр., 2006).

Регистрация флуоресценции ЦитС

Измерения проводили на приборе RF-5301 PC (Shimadzu, Япония). Использовали кварцевые кюветы с длиной оптического пути 5 мм.

В кювету для флуоресценции отбирали раствор ЦитС в 20 мМ фосфатном буферном растворе, добавляли к нему равный объем воды или метанола, измеряли флуоресценцию в области 300-400 нм при длинах волн возбуждения 268, 275 и 289 нм. Для устранения пика комбинационного рассеяния воды из спектров проб, содержащих ЦитС, вычитали спектры проб, в которых вместо ЦитС добавляли такой же объем воды.

Для спектрофлуориметрического исследования комплекса Цит-КЛ в гидрофобном окружении пробу для спектрофотометрического исследования комплекса Цит-КЛ упаривали в токе азота и затем растворяли полученный осадок в гексане.

Метод ДСР для изучения размера частиц комплекса Цит-КЛ

Измерения проводили на приборе Zetasizer Nano ZS (Malvern, Великобритания) в кварцевой кювете. Непосредственно перед измерением растворы центрифугировали для осаждения случайно попавших в пробу крупных частиц, мешающих анализу.

Вводили в ПО Zetasizer следующие значения показателей преломления и динамической вязкости растворителей, взятые из литературы: вода – 1,3317 (Hale and Querry, 1973), метанол – 1,326 (El-Kashef, 2000), хлороформ – 1,441 (Kedenburg и сотр., 2012).

Показатель преломления для водно-метанольных и хлороформ-метанольной сред рассчитывали по уравнению:

$$\frac{n^2 - 1}{n^2 + 2} = \frac{n_1^2 - 1}{n_1^2 + 2}\varphi_1 + \frac{n_2^2 - 1}{n_2^2 + 2}\varphi_2$$

 Γ де ϕ_i — объемная доля компонента, n — показатель преломления смеси, а n_i — показатель преломления компонента смеси (Narendra и сотр., 2011).

Показатели преломления двухкомпонентных сред, использовавшихся в настоящей работе, составили: вода-метанол (4:1 v/v) – 1,3306, вода-метанол (1:1 v/v) – 1,3288, хлороформ-метанол (86:14 v/v) – 1,4256.

Использовали следующие величины показателей преломления частиц: для цитохрома c - 1,34 (Lee и сотр., 2002), комплекса Цит-ТОКЛ - 1,46 (показатель преломления липидного бислоя (Maniti и сотр., 2011)).

Использовались следующие величины динамической вязкости растворителей, полученные из литературных данных: вода -0.89 мПа*сек (Kim и сотр., 2012), вода-метанол (4:1 v/v) -1.23 мПа*сек, вода-метанол (1:1 v/v) -1.61 мПа*сек (Yilmaz, 2002).

Для хлороформенно-метанольной ($86:14 \ v/v$) смеси использовалось значение динамической вязкости, равное 0,696 мПа*сек. Изменение температуры от 303К до 298К соответствует изменению вязкости от 0,6315 (Crabtree and O'Brien, 1991) до 0,663 мПа*сек (Kadam и сотр., 2006).

Анализ ХЛ при образовании липидных радикалов комплексом Цит-КЛ

Измерение спектров поглощения смеси, используемой при регистрации XII в ходе пероксидазных реакций

При измерении кинетики разрушения цитохрома c и кумариновых сенсибилизаторов в кювету добавляли 300 мкл 100 мкМ раствора цитохрома c, 150 мкл 6 мМ ТОКЛ, 75 мкл 1 мМ раствора кумарина С-334 или 150 мкл 500 мкМ раствора кумарина С-314 или С-525, а также - 300 мкл 2150 мкМ раствора перекиси водорода (в контрольных измерениях H_2O_2 заменяли

фосфатным буферным раствором). Общий объем пробы составлял 3 мл, данный объем доводили до необходимого объема 20 мМ фосфатным буферным раствором.

Измерение кинетики ХЛ при липидной пероксидации в водно-солевом растворе

Хемилюминесценцию измеряли на хемилюминометре Lum-5773 (ДИСофт, Россия), работающем под управлением ПО PowerGraph (версия 3.3, разработчик Измайлов Д.Ю.). Измерения начинались с регистрации фоновой хемилюминесценции: 100 мкл 100 мкМ ЦитС в ФБ, 25 мкл 1 мМ кумарина С-334 в метаноле и 775 мкл ФБ были помещены в первую кювету, после чего регистрация продолжались в течение 25 секунд. Затем открывали крышку хемилюминометра, быстро вводили в первую кювету 100 мкл метанольного 6 мМ раствора БКЛ, закрывали крышку и продолжали запись кинетики ХЛ. После добавления метанольного раствора БКЛ интенсивность хемилюминесценции измеряли в течение 3,5 мин, а затем первую кювету удаляли из хемилюминометра и покрывали фильтровальной бумагой. Поскольку образование радикалов в системе происходило в отсутствии пероксида водорода, но в присутствии кислорода воздуха, то такой процесс можно назвать квази-липоксигеназной реакцией. Для регистрации кинетики липопероксидазной реакции в полученную смесь реагентов добавляли пероксид водорода. Для этого, в хемилюминометр помещали вторую кювету, содержащую 100 мкл 1,5 мМ раствора Н₂О₂, и продолжали регистрацию хемилюминесценции во второй кювете в течение 10 секунд. Затем, 900 мкл содержимого первой кюветы добавляли во вторую кювету и продолжали запись в течение 6 мин. Добавление большего объема к меньшему обеспечивало хорошее перемешивание реагентов к моменту начала пероксидазной реакции. Влияние антиоксидантов на эти реакции изучали путем добавления 50 мкл раствора антиоксиданта определенной концентрации до начала регистрации фоновой люминесценции.

Измерение кинетики ХЛ при липидной пероксидации в неполярной среде

Измерения проводились по схеме, аналогичной измерениям ХЛ в водно-солевом растворе. В первую измерительную кювету помещали 21 мкл метанольного раствора 3,6 мМ БКЛ (конечная концентрация 150 мкМ) и регистрировали ХЛ в течение 30 секунд (фоновый сигнал). Затем, продолжая регистрацию ХЛ, в кювету вводили шприцем смесь, состоящую из 13 мкл 1 мМ С-525 (раствор в метаноле, конечная концентрация 25 мкМ), 35 мкл раствора комплекса Цит-КЛ в хлороформ-метанольной фазе, и 426 мкл метанола и продолжали запись ХЛ еще в течение 15 мин. Далее в полученную выше смесь вводили шприцем в 5 мкл раствора 9 мМ Н₂О₂ (конечная концентрация 90 мкМ), помещенного в новую измерительную кювету.

Измерение кинетики ХЛ при липидной пероксидации в митохондриях

В пустую кювету для XЛ добавляли смесь суспензии митохондрий и раствора кумарина C-334 и начинали регистрацию фоновой XЛ. Затем в кювету добавляли смесь, состоящую из растворов азида натрия, ЦитС и ТОКЛ и продолжали регистрацию XЛ. Последним в кювету добавляли раствор пероксида водорода. Детали эксперимента описаны в подписи к Рис. 7.

Статистическая обработка данных

При определении размеров частиц методом ДСР результаты измерений обрабатывались статистически и определялись средний размер частиц \pm стандартное отклонение. Эти данные, полученные с помощью ПО Zetasizer, приведены на рисунках и в тексте.

При рассмотрении результатов измерения кинетики разрушения кумариновых активаторов XЛ и ЦитС с помощью метода спектрофотометрии на рисунках приведены результаты типичного эксперимента. Степень разрушения этих соединений за 8 минут представлена в виде среднего значения \pm ошибка среднего, полученного в результате 5 независимых измерений.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Уточнение протоколов приготовления комплекса Цит-КЛ

В нашей работе методика приготовления комплекса Цит-КЛ в гидрофобной среде была уточнена, для чего мы изменяли концентрацию метанола и последовательность смешивания реагентов. В результате была выработана описанная ниже процедура.

Смешивали 260 мкМ водно-метанольный (объемное соотношение вода/метанол составляло 4:1) раствор ЦитС с 13,5 мМ метанольным раствором ТОКЛ, чтобы получить водно-метанольный (объемное соотношение вода/метанол составляло 1:1) раствор комплекса Цит-КЛ с молярным соотношением липид/белок, равным 30. Затем, к водно-метанольному раствору комплекса Цит-КЛ добавляли равный объем хлороформа — была получена смесь, в которой отношение объемов хлороформ/вода/метанол составляло 2:1:1. Данную смесь подвергали интенсивному перемешиванию или центрифугированию для разделения фаз. После разделения фаз нижнюю (хлороформенно-метанольную) окрашенную в розоватый цвет фракцию, содержащую экстрагированный комплекс Цит-КЛ, отбирали пипеткой Пастера для дальнейшего анализа или для выпаривания растворителя и растворения комплекса в другом растворителе.

Для спектрофотометрического и спектрофлуориметрического анализа готовили раствор комплекса Цит-КЛ в неполярной среде таким образом, чтобы соотношение липид/белок в исходной пробе составило 40.

Для хемилюминесцентного анализа использовался более концентрированный раствор ЦитС, чтобы молярное соотношение липид/белок в исходной пробе составило 2,37. Это позволяло достигнуть лучшей эффективности экстракции комплекса Цит-КЛ в хлороформ.

Строение нанокомплекса Цит-КЛ в гидрофобном окружении.

Размеры Цит-КЛ в неполярном окружении

Комплекс Цит-КЛ был получен из ЦитС и ТОКЛ (в молярном соотношении 1:30) в воднометанольно-хлороформенном растворе и затем переведен в хлороформенно-метанольную фазу, после чего был измерен размер частиц в пробе.

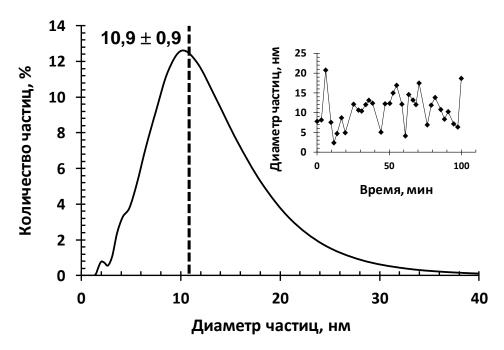


Рис. 1. Распределение размеров частиц в хлороформенно-метанольном растворе Цит-КЛ. Среднее значение диаметра частиц показано вертикальной пунктирной линией. Врезка: средние значения диаметров, полученных при последовательных измерениях в одной пробе с хлороформенно-метанольным раствором Цит-КЛ.

Средний диаметр частиц в пробе составил 10.9 ± 0.9 нм, что практически совпадает со значением в 11 ± 1 нм, полученным для кристаллов Цит-КЛ (Владимиров и сотр., 2011). Однако, в отличие от размеров частиц, полученных при последовательных измерениях в водном растворе ЦитС, в нашем случае при последовательных измерениях в одной пробе средние размеры частиц варьировали в достаточно широком диапазоне значений (Рис. 1, врезка). Для более детального анализа полученных данных была построена гистограмма (Рис. 2 A), на которой по оси абсцисс отложены диаметры частиц, а по оси ординат - число измерений, приходящихся на диапазоны значений шириной 1.5 нм.

Были выявлены три наиболее часто встречающиеся диапазона: 4,0-5,5; 7,0-8,5 и 11,5-13,0 нм (группы 1-3 на Рис. 2 А, соответственно). Из 34 проведенных измерений 4, 5 и 8 относились к группам 1, 2 и 3, соответственно (Рис. 2 А). На Рис. 2 Б отражены распределения размеров частиц в группах измерений 1, 2 и 3. Средние диаметры частиц в группах составили: группа $1-4,7\pm0,75$, группа $2-7,8\pm1,0$, группа $3-12,1\pm1,4$ нм.

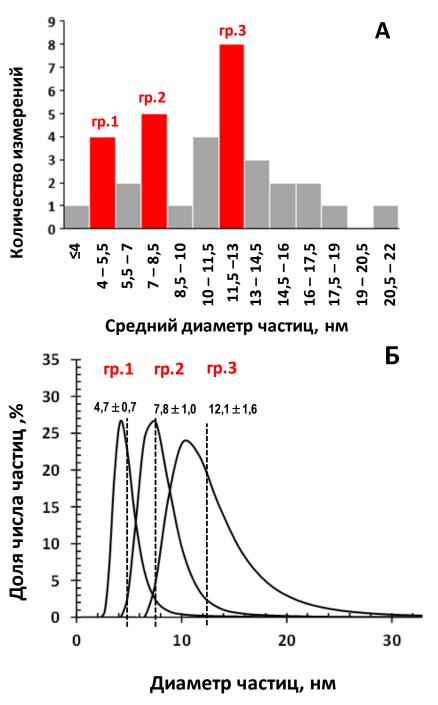


Рис. 2. Результаты обработки данных, полученных при последовательных измерениях пробы, содержащей хлороформенно-метанольный раствор Цит-КЛ. (A) — Распределение средних значений размеров частиц, полученных в последовательных измерениях. (Б) — Распределение значений размеров частиц в отобранных группах измерений.

Логичным представляется сравнить полученные данные (Рис. 2 Б) с результатами измерения кристаллов Цит-КЛ с помощью метода малоуглового рассеяния рентгеновское лучей (МУР). Оказалось, что размеры частиц Цит-КЛ, измеренные в хлороформенно-метанольном растворе и в кристаллах, практически совпадают: 7.8 ± 1.0 нм в растворе и 8.0 ± 0.7 нм в микрокристаллическом осадке, 12.1 ± 1.4 нм в растворе и 11.1 ± 1.0 нм в микрокристаллах. Мы видим, что в этих двух парах значения размеров частиц Цит-КЛ являются одинаковыми в пределах погрешности измерения.

Данные о группе частиц с диаметром 4.7 ± 0.7 нм не поддаются однозначной интерпретации. Это могут быть молекулы ЦитС с измененной конформацией, в которой дополнительные гидрофобные группы оказались на поверхности глобулы, обеспечивая возможность растворения таких молекул ЦитС в гидрофобном растворителе. В пользу такой гипотезы говорят данные о том, что подобная структура наблюдается в ЦитС, помещенном на границу раздела фаз водавоздух (Marchenkova и сотр., 2015), хотя для ее окончательного подтверждения требуются дополнительные данные.

Конформация ЦитС в комплексе Цит-КЛ, помещенном в гидрофобное окружение.

На Рис. З А представлен спектр флуоресценции раствора Цит-КЛ в гексане при использовании различных длин волн возбуждающего света.

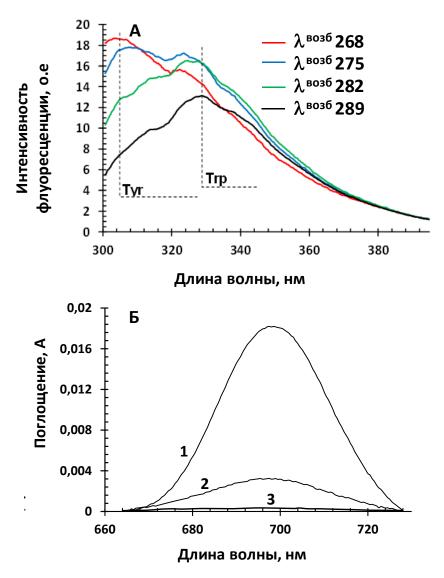


Рис. 3. Спектры флуоресценции и поглощения комплекса Цит-КЛ в неполярной среде. (A) – Спектры флуоресценции раствора Цит-КЛ в гексане при различных длинах волн возбуждающего света. (Б) – Поглощение железосерной связи в 50 мкМ (1) и 12,8 мкМ (2) водных растворах ЦитС и в растворе Цит-КЛ в неполярной среде (3). Концентрация ЦитС в составе Цит-КЛ – 9,8 мкМ.

При возбуждении светом с длинами волн 268 и 275 нм наблюдалась флуоресценция как тирозиновых (максимум при 307-310 нм), так и триптофановых (максимум при 330 нм) остатков.

При возбуждении светом с длинами волны 282 и 289 нм в основном наблюдалась флуоресценция только триптофановых остатков (максимум при 330 нм). При этом, по обе стороны от максимума при 330 нм наблюдались «плечи» при 315 и 340 нм, что типично для индольного кольца в неполярном окружении.

Как видно Рис. 3 Б, плавление глобулы ЦитС в комплексе Цит-КЛ, помещенном в гексан (кривая 3), сопровождается исчезновением полосы поглощения при 699 нм, относящейся к координационным железосерным связям между гемовым железом и серой метионина Met80. Таким образом, конформация ЦитС в комплексе Цит-КЛ изменена, за счет чего Цит-КЛ может приобретать ферментативную активность и катализировать квази-липоксигеназные и липопероксидазные реакции.

Механизм реакций образования липидных радикалов комплексом Цит-КЛ

Разрушение кумариновых активаторов ХЛ в реакциях, катализируемых Цит-КЛ

Предварительно было установлено, что кумарины C-314, C-334 и C-525 не взаимодействуют с отдельно взятыми ЦитС, ТОКЛ и H_2O_2 .

Было показано (Рис. 4), что кумариновые активаторы XЛ разрушаются в ходе пероксидазной реакции (для C-525 и C-334 были проведены аналогичные представленным на рисунке измерения спектров поглощения), катализируемой комплексом Цит-КЛ, что требует введения поправок при математическом моделировании кинетики XЛ, учитывающих разрушение ЦитС и кумарина в ходе изучаемого процесса.

Табл. 1. Разрушение кумариновых сенсибилизаторов за 8 минут после начала пероксидации.

Система содержала Цит-КЛ и следующий сенсибилизатор:	Разрушение кумарина (%) за время измерения реакции *
C-314	29 ± 3
C-334	39 ± 5
C-525	48 ± 4

^{*}n = 5, p = 0.95

Стоит, однако, отметить, что время инкубации в описанных выше опытах (более часа) во много раз превышало время исследования кинетики процессов в большинстве опытов по измерению XЛ.

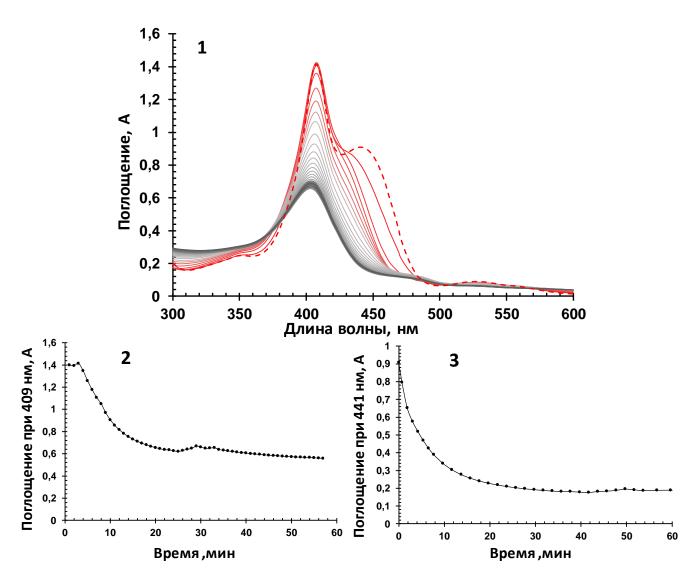


Рис. 4. Результаты измерения серии спектров поглощения смеси, в которой протекает катализируемая комплексом Цит-КЛ пероксидазная реакция в присутствии кумарина С-314. Красная кривая — первое измерение, черная — последнее, промежуточные цвета (через серый) — промежуточные измерения. 1 - Серия спектров поглощения смеси: 10 мкМ ЦитС, 300 мкМ ТОКЛ, 25 мкМ С-314, 215 мкМ Н₂О₂, пунктирная красная кривая — спектр смеси без H₂O₂. 2 - Изменения значения оптической плотности в полосе Соре. 3 - Изменения значения оптической плотности в полощения С-314.

Максимальное снижение концентрации среди рассмотренных кумаринов за исследуемое при измерении XЛ время составило $48 \pm 4\%$ для кумарина C-525 (Табл. 1). Таким образом, основные выводы о концентрации свободных радикалов и о механизме свободнорадикальных реакций, полученные при анализе кинетики сопровождающей эти реакции XЛ, могут быть сделаны без учета разрушения кумаринов.

Ферментативная активность комплекса Цит-КЛ, находящегося в водно-солевых растворах

В рамках данного исследования была изучена ферментативная активность Цит-КЛ, помещенного в водный раствор и в неполярную среду.

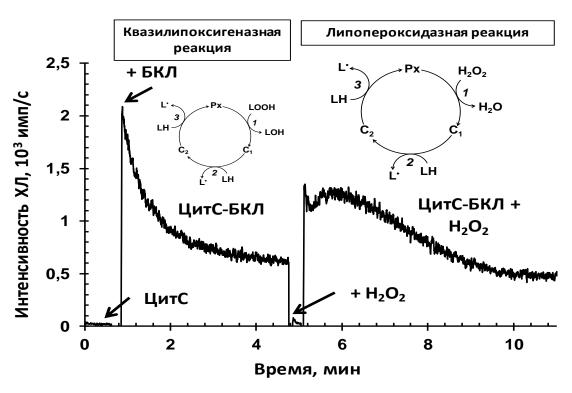


Рис. 5. Липоксигеназная и липопероксидазная активность комплекса Цит-КЛ. ЦитС: 25 мкМ С-334, 10 мкМ ЦитС. ЦитС-БКЛ: 25 мкМ С-334, 10 мкМ ЦитС, 600 мкМ БКЛ; ЦитС-БКЛ+H₂O₂: 25 мкМ С-334, 10 мкМ ЦитС, 600 мкМ БКЛ, 150 мкМ H₂O₂.

Ha

Рис. 5 показана кинетика XЛ в системе, содержащей ЦитС и бычий кардиолипин, который с одной стороны, образовывал комплекс Цит-КЛ, а с другой — был субстратом окисления. Интенсивность хемилюминесценции отражает величину концентрации липопероксильных радикалов (LOO•) в каждый момент времени. Поскольку КЛ содержал липидные гидропероксиды, то при добавлении его к ЦитС немедленно (сразу после образования Цит-КЛ) наблюдалась вспышка свечения, связанная с образованием липидных радикалов, в соответствии со схемой слева над диаграммой. После того, как предсуществующие в БКЛ липидные гидропероксиды были полностью израсходованы в ходе квази-липоксигеназной реакции, на что указывает снижение интенсивности ХЛ до постоянного уровня, в пробу добавляли раствор пероксида водорода. Это приводило к образованию новой порции липидных радикалов (согласно схеме реакций справа над диаграммой), что сопровождалось увеличением интенсивности ХЛ.

Таким образом, липопероксильные радикалы (LOO•) образуются в двух типах реакций: 1) разложение предсуществующих гидропероксидов (LOOH), или в *квази-липоксигеназной реакции* и 2) перекисное окисление липидов в присутствии H₂O₂, или в *липопероксидазной реакции*.

Ферментативная активность комплекса Цит-КЛ в неполярном окружении

Была также изучена ферментативная активность Цит-КЛ, помещенного в неполярную среду (Рис. 6). На Рис. 6 A отражена кинетика кумарин-активированной ХЛ, сопровождающей квази-

липоксигеназную реакцию, запускаемую при добавлении раствора Цит-КЛ в хлороформеннометанольной смеси к раствору БКЛ. Добавление Цит-КЛ к метанолу, а не к БКЛ, не приводило к появлению ХЛ (Рис. 6 A, 2), а исключение других компонентов реакционной смеси (ЦитС или кумарина C-525) снижало интенсивность ХЛ до фонового уровня (данные не показаны).

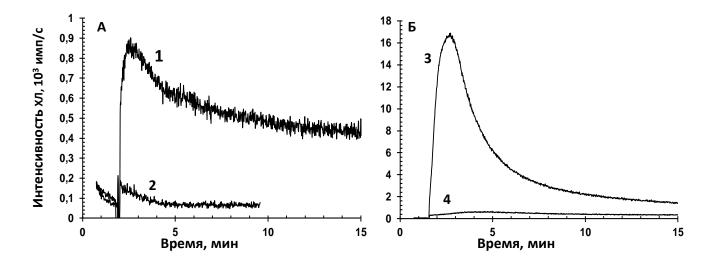


Рис. 6.Активированная кумарином хемилюминесценция, наблюдаемая при окислении липидов в присутствии Цит-КЛ в неполярной среде. (А) — Квази-липоксигеназная активность комплекса Цит-КЛ, помещенного в хлороформенно-метанольную среду. Фаза 1 (0-1,2 мин) соответствует БКЛ (1) или метанолу (2), помещенным в измерительную кювету. Фаза 2 (1,2-9 мин) соответствует добавлению хлороформенно-метанольного раствора, содержащего комплекс Цит-КЛ и кумарин С-525. Концентрации компонентов смеси в момент запуска квази-липоксигеназной реакции (1,2 мин): ЦитС — 5мкМ (согласно данным о поглощении), БКЛ - 150 мкМ, С-525 - 25 мкМ.
(Б) — Липопероксидазная активность комплекса Цит-КЛ, помещенного в хлороформеннометанольную среду. Фаза 1 (0-1,2 мин) соответствует Н2O2 (3) или метанолу (4), помещенным в измерительную кювету. Фаза 2 (1,2-9 мин) соответствует добавлению раствора из пробы, описанной в (А), после измерения кинетики ХЛ, сопровождающей квази-липоксигеназные реакции. Концентрация Н2O2 в момент запуска липопероксидазной реакции - 90 мкМ.

После того, как предсуществующие в БКЛ липидные гидропероксиды были полностью израсходованы в ходе квази-липоксигеназной реакции, на что указывает снижение интенсивности ХЛ до постоянного уровня, в пробу добавляли раствор пероксида водорода. Это приводило к образованию новой порции липидных радикалов, что сопровождалось увеличением интенсивности ХЛ (Рис. 6 Б, 3) — запускалась липопероксидазная реакция. В отсутствии H_2O_2 липопероксидазная реакция не протекала (Рис. 6 Б, 4).

Ферментативная активность Цит-КЛ в митохондриальных мембранах

С помощью активированной кумарином C-334 хемилюминесценции нами было изучено окисление липидов в мембранах изолированных митохондрий, связанное действием комплекса Цит-КЛ. Для ингибирования каталаз в реакционную систему добавляли азид натрия.

Мы можем видеть (Рис. 7), что при добавлении 500 мкМ H_2O_2 к полной системе (добавка 5, верхний график) происходит вспышка хемилюминесценции, которую можно связать с образованием липидных радикалов в ходе пероксидации липидов.

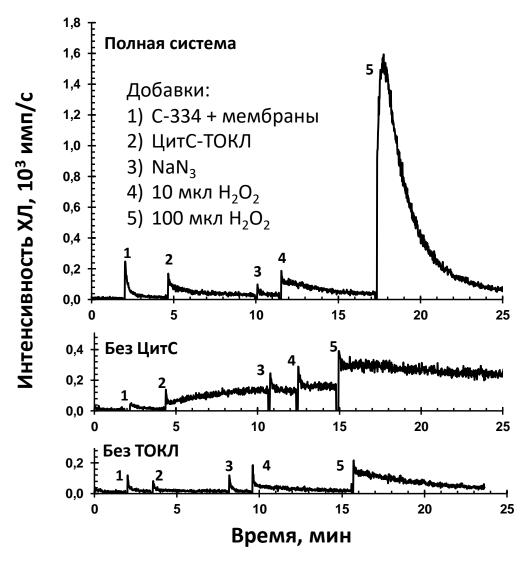


Рис. 7. Хемилюминесценция, наблюдаемая при добавлении комплекса Цит-КЛ к мембранам митохондрий. Последовательность добавок реагентов показана на рисунке. Конечные концентрации реагентов: 1) C-334 – 25 мкМ, 2) ЦитС – 22,5 мкМ, ТОКЛ – 750 мкМ, 3) NaN₃ – 100 мкМ, 4) H₂O₂ – 45 мкМ и 5) 500 мкМ.

В том случае, когда в систему не добавляли ТОКЛ (нижний график), эффект от добавки 5 практически отсутствовал. Наблюдаемая в таком случае ХЛ может быть обусловлена образованием комплексов ЦитС с фосфолипидами митохондриальных мембран. В том случае, когда в систему не добавляли ЦитС (средний график), после добавки 5 наблюдалась более интенсивная ХЛ, чем в случае, когда в систему не добавляли ТОКЛ. Это можно объяснить наличием небольшого количества ЦитС в суспензии шокированных митохондрий, который мог попасть в раствор из межмембранного пространства при разрушении целостности мембран

митохондрий. В таком случае добавление к системе раствора ТОКЛ приводит к образованию некоторого количества Цит-КЛ.

Важно отметить, что во всех трех рассмотренных реакционных системах не наблюдалась XЛ, характерная для квази-липоксигеназной реакции, что указывает на то, что в суспензии митохондрий не присутствовали липидные гидроперекиси.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Комплекс Цит-КЛ в разбавленных водных растворах и в неполярной среде имеет то же соотношение липид/белок, что и в микрокристаллическом осадке

В работе, проведенной совместно с сотрудниками кафедр медицинской биофизики $\Phi\Phi M$ МГУ и аналитической химии Химфака МГУ методами спектрофотомерии и термолинзовой спектроскопии, были сопоставлены результаты спектрофотометрического титрования ЦитС раствором ТОКЛ, которое показывает соотношение липид/белок (ЦитС/ТОКЛ) в осадке Цит-КЛ, с результатами аналогичного титрования разбавленных водных растворов цитохрома c с регистрацией образования Цит-КЛ по снижению термолинзового сигнала по сравнению с исходным белком (Проскурнина и сотр., 2018). Результаты сравнения показывают, что при всех исследованных рН отношение липид/белок было одинаковым в микрокристаллах и разбавленных водных растворах, но менялось в зависимости от рН.

В наших опытах в растворе комплекса Цит-КЛ в гидрофобном растворителе присутствовали частицы, в которых соотношение липид/белок составляло 60, т.е. было таким же, как при рН 7,4 в водном растворе и в кристаллическом осадке Цит-КЛ. Это говорит о том, что во всех трех изученных системах состав наночастиц Цит-КЛ был одним и тем же, что предполагает и одинаковые размеры наносфер в этих трех случаях.

По-видимому, две самые многочисленные фракции наночастиц, наблюдаемые с помощью метода ДСР в нашей работе (с диаметрами 7.8 ± 1.0 и 12.1 ± 1.4 нм), различаются по размеру изза различного количества молекул кардиолипина в липидном монослое, покрывающем белковые глобулы. Это подтверждается теоретическими расчетами диаметров сфер Цит-КЛ при различном содержании в них кардиолипина.

Размеры наносфер Цит-КЛ в неполярном растворителе менее однородны, чем в микрокристаллах, но имеют те же средние величины

В нашей работе показано, что раствор комплекса Цит-КЛ в гидрофобном растворителе содержал две группы частиц - с диаметром 7.8 ± 1.0 и 12.1 ± 1.4 нм. Также в этом растворе обнаруживалась группа частиц с диаметром 4.7 ± 0.75 нм и частицы с диаметром более 16 нм.

Ранее при изучении МУР в осадке комплекса Цит-КЛ было показано, что этот осадок содержит микрокристаллическую структуру с межплоскостными расстояниями 8,0 и 11,1 нм (Владимиров Ю.А. и сотр, 2013). Таким образом, на основании измерений ДСР и расчетов содержания КЛ в составе Цит-КЛ, мы можем предположить, что существуют как минимум два типа частиц Цит-КЛ – с диаметром приблизительно 11 нм с соотношением липид/белок, равным 59 и с диаметром приблизительно 8 нм с соотношением липид/белок, равным 13, Рис. 8.

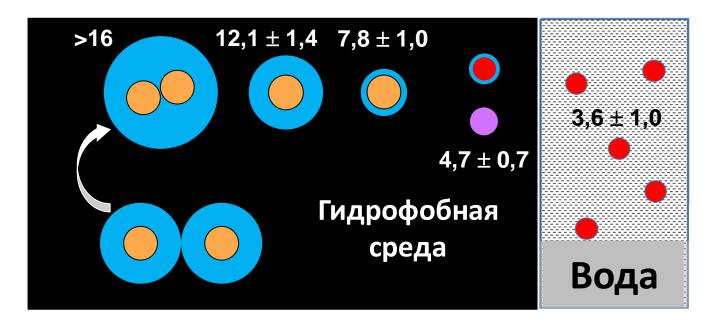


Рис. 8. Схема возможного строения частиц, наблюдаемых при образовании Цит-КЛ в неполярном растворителе. Цифрами указаны диаметры частиц, нм. Красным и оранжевым цветом обозначены молекулы ЦитС в нативном и «расплавленном» состояниях, соответственно. Фиолетовым цветом обозначена молекула частично расплавленного ЦитС, на поверхности которой находятся гидрофобные участки, отсутствующие на поверхности молекулы ЦитС в нативном состоянии. Голубым цветом обозначены липидные слои молекул КЛ, окружающие молекулу ЦитС.

В Цит-КЛ ЦитС имеет конформацию частично расплавленной глобулы

На Рис. 3 A мы наблюдаем сильную тирозиновую и триптофановую флуоресценцию Цит- КЛ, растворенного в гексане. Эти данные указывают на увеличение расстояний между остатками Туг и Тгр и гемом, которые в нативном цитохроме c меньше радиуса Ферстера, что приводит к тушению флуоресценции.

При измерении спектра поглощения Цит-КЛ и ЦитС было обнаружено, что в комплексе Цит-КЛ в неполярном растворителе происходит исчезновение полосы поглощения при 699 нм, т.е. разрыв железосерной связи >Fe···S(Met80) (Рис. 3 Б).

Таким образом, конформация ЦитС в комплексе Цит-КЛ изменена (переходит в форму расплавленной глобулы), за счет чего Цит-КЛ может приобретать ферментативную активность и катализировать образование липидных радикалов.

Реакции окисления липидов с образованием свободных радикалов в присутствии раствора Цит-КЛ идут по механизму пероксидазного цикла

Полученные нами данные говорят о том, что реакции окисления липидов с образованием свободных радикалов в присутствии раствора Цит-КЛ идут по механизму пероксидазного цикла, хорошо изученному ранее в том числе и методами хемилюминесценции на примере перекисного окисления люминола пероксидазой хрена (Cormier and Prichard, 1968), Рис. 9.

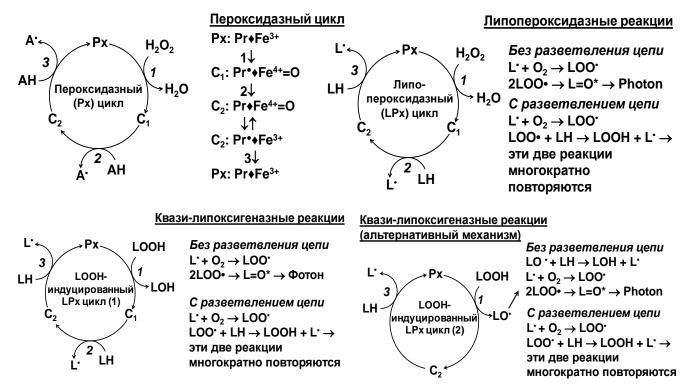


Рис. 9. Предполагаемые механизмы пероксидазных и липопероксидазных реакций, катализируемых комплексом *Цит-КЛ*.

Рх – пероксидаза; Рг – апо-пероксидаза; Рг • свободный радикал белка; С₁ – соединение 1 (Сотроинд I); С₂ – соединение 2; ♦ • порфириновое кольцо гема пероксидазы; АН – второй субстрат пероксидазной реакции; А • свободный радикал субстрата; LН – полиненасыщенная жирная кислота; L • липидный (алкильный) радикал; LOO • липидный (пероксильный) радикал; L=O * − кетон (продукт диспропорционирования двух радикалов LOO •), в возбужденном состоянии. Верхний ряд, слева: Пероксидазный цикл реакций, катализируемых пероксидазой из корней хрена, впервые изученный Б. Чансом. Верхний ряд, справа: липоксипероксидазный цикл реакций, в котором LH выступают в роли второго субстрата. Нижний ряд, слева: липоксипероксидазный цикл, в котором LOOH выступают в роли первого субстрата. Нижний ряд, справа: Гипотетическая схема той же квази-липоксигеназной реакции, что и снизу слева, при условии, что Рх и LOOH взаимодействуют по одноэлектронному механизму с образованием радикала LO • и промежуточного продукта С₁. В обоих механизмах квази-липоксигеназной реакции в цикле расходуется две молекулы липида.

На то, что липидная пероксидация, катализируемая Цит-КЛ, протекает по тому же механизму, что и классические пероксидазные реакции, указывают также и приведенные в диссертации данные о действии антиоксидантов на кинетику ХЛ (Диссертация, рис.33).

Возможно и перспективно применение комплекса Цит-КЛ в качестве действующего противоракового средства нового типа

С целью объяснить молекулярно-клеточные механизмы апоптогенного и цитотоксического действия суспензии Цит-КЛ, показанного на культуре раковых клеток (Vladimirov и сотр., 2018), нами была предложена схема, представленная на Рис. 10.

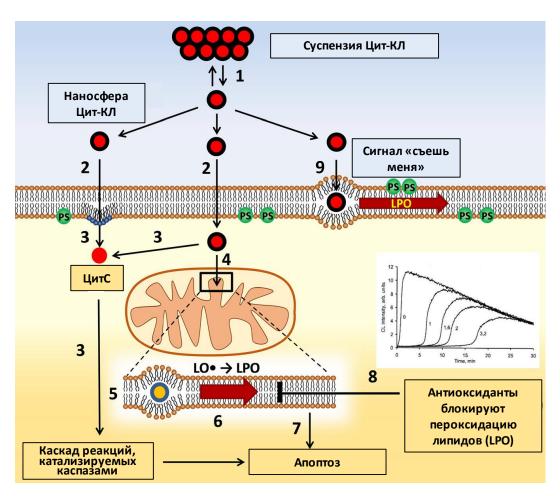


Рис. 10. Возможные механизмы проапоптотического и цитотоксического действия Цит-КЛ на раковые клетки. 1 - микрокристаллы Цит-КЛ находятся в равновесии с гидрофобными наносферами комплекса Цит-КЛ. 2 - Комплекс Цит-КЛ может проходить через клеточную мембрану. 3 - Наносферы избавляются от своей липидной оболочки, а «голый» цитохром с входит в цитозоль. Это событие могло бы активировать каскад опосредованных каспазой реакций, заканчивающихся гибелью клеток, апоптозом. 4 - Более вероятным событием является прохождение Цит-КЛ в митохондриях и его включение во внутреннюю мембрану митохондрий. 5 - Гидрофобная наносфера Цит-КЛ диффундирует внутри липидного бислоя 6 - Наносфера Цит-КЛ инициирует перекисное окисление липидов повсюду на своем пути. 7- Это приводит к запуску реакций апоптоза и к гибели клетки. 8 - Антиоксиданты блокируют перекисное окисление. 9 - Цит-КЛ может быть встроен во внешнюю мембрану и катализировать перекисное окисление липидов (LPO). Это приведет к экстернализации фосфатидилсерина (PS), который служит для фагоцитов сигналом «съешь меня».

Вероятный способ действия Цит-КЛ заключается в его проникновении через цитоплазматическую мембрану (события 1 и 2 (правое)), затем через внешнюю

митохондриальную мембрану (событие 4) и последующее включение во внутреннюю мембрану митохондрий (событие 5). Добавление комплекса Цит-КЛ к суспензии изолированных митохондрий вызывало в наших опытах липидную пероксидацию, что напрямую подтверждает развитие событий 5, 6 и 7. Мы можем предположить, что наносфера Цит-КЛ будет диффундировать во внутренней мембране митохондрий вдоль мембранного липидного слоя, осуществляя пероксидацию липидов, (событие 6) до тех пор, пока не достигнет комплекса VDAC-ANT (Voltage-Dependent Anion Channel, Adenine Nucleotide Translocase). Перекисное окисление липидов приводит к разбуханию митохондриальной матрицы и открытию мегапор в наружной митохондриальной мембране. Таким образом, развитие апоптоза по путям 1-2, 4-7 находится в хорошем согласии как с нашими, так и с литературными данными.

Еще один возможный способ гибели клеток, согласующийся с нашими данными, также показан на Рис. 10 (событие 9). Согласно этой гипотезе, Цит-КЛ включается непосредственно в наружную клеточную мембрану и катализирует в ней перекисное окисление липидов. За этим следует появление фосфатидилсерина (PS) на поверхности клетки. PS – это сигнал «съешь меня» для макрофагов, которые распознают поврежденную клетку и уничтожают ее.

выводы

- 1. Отработаны условия получения и методы изучения строения пероксидазной активности комплекса *цитохрома с* с кардиолипином (Цит-КЛ) в неполярной среде.
- 2. Исследованы размеры наносфер комплекса и соотношение липид/белок в комплексах Цит-КЛ в неполярном окружении (гидрофобных растворителях). Частицы комплекса Цит-КЛ в неполярном окружении имеют размер 7,8 ± 1,0 (при соотношении липид:белок, равном 13) и 12,1 ± 1,4 нм (при соотношении липид/белок, равном 59). Эти данные были сопоставлены со строением Цит-КЛ в микрокристаллических осадках и разбавленных водных растворах. Размеры частиц Цит-КЛ в неполярном окружении совпадают с размерами этих частиц в микрокристаллическом осадке, а соотношение липид/белок в Цит-КЛ, помещенном в неполярную среду, соответствует аналогичному соотношению в разбавленных водных растворах Цит-КЛ с точностью до ошибки измерения.
- 3. Исследованы изменения конформации цитохрома *с* при переходе из водного раствора в комплекс Цит-КЛ и в водно-метанольный раствор. Конформация ЦитС, входящего в состав Цит-КЛ, помещенного в неполярное окружение, отличается от нативной: разрушены железосерные связи между гемовым железом и серой метионина Met80 (исчезает поглощение при 699 нм) и увеличено расстояние от гема до остатков тирозина и триптофана (появляется флуоресценция при 307-310 и 330 нм). Конформация ЦитС, помещенного в водно-метанольную среду, изменена таким же образом. Это говорит о том, что в данном случае структурные изменения это

частичное плавление глобулы. Оно обратимо, о чем говорят данные по поглощению при 699 нм в системе метанол-цитохром.

- 4. Исследована изучения образования свободных возможность радикалов липопероксидазных катализируемых комплексом Цит-КЛ, реакциях, методом хемилюминесценции, активированной изохинолизиновыми кумариновыми красителями С-525 и С-334. Было обнаружено, что кумариновые активаторы хемилюминесценции (С-525, С-314 и С-334), ранее используемые при исследованиях образования пероксильных радикалов в мембранных системах, разрушаются в ходе пероксидазной реакции, катализируемой комплексом Цит-КЛ. Однако было выяснено, что этот процесс не сопровождается хемилюминесценцией. Кроме того, мы показали, что за время измерения кинетических кривых хемилюминесценции происходит разрушение не более 29% С-334, 48% С-525 и 39% С-314. Таким образом, выводы об образовании свободных радикалов и о механизме реакций, полученные при анализе кинетики хемилюминесценции, могут быть сделаны без внесения поправок на частичное разрушение участников реакции реагентов.
- 5. Путем регистрации кинетики хемилюминесценции в присутствии активаторов С-334 и С-525 изучено образование свободных радикалов в липопероксидазных реакциях, катализируемых комплексом Цит-КЛ, методом активированной кумаринами хемилюминесценции в среде, состоящей из гидрофобного растворителя. Было показано образование липопероксильных радикалов при окислении природного кардиолипина в водных растворах и в неполярных растворителях, катализируемое комплексом Цит-КЛ. Было показано, что радикалы образуются в двух реакциях разложение гидропероксидов липидов и пероксидация кардиолипина в присутствии H₂O₂ (квази-липоксигеназная и липопероксидазная реакции). Антиоксиданты тролокс и дигидрокверцетин угнетали образование радикалов в липопероксидазной реакции в концентрациях порядка десятой доли мкМ. Механизм реакций, судя по форме кинетических кривых, был аналогичен механизму ингибирования других пероксидазных реакций, ранее изученных в нашем коллективе.
- 6. Реакция липидной пероксидации протекает при действии комплекса Цит-КЛ на изолированные митохондрии, преимущественно на внутренние мембраны, о чем говорит факт интенсивной хемилюминесценции суспензии шокированных митохондрий в присутствии Цит-КЛ и пероксида водорода.
- 7. В совокупности наши результаты показывают, что механизм обнаруженного в совместной работе с нашим участием апоптотического и цитотоксического действия Цит-КЛ на раковые клетки может включать в себя катализ липидной пероксидации в мембранах митохондрий, который приводит к образованию липопероксильных радикалов в квази-липоксигеназной и липопероксидазной реакциях. Была разработана схема последовательных процессов в клетке,

заканчивающаяся ее гибелью. Эти данные могут послужить началом создания нового типа лекарственных препаратов, которые, будучи элементами самой клетки, оказывают действие на раковые клетки, нечувствительные к синтетическим препаратам.

СПИСОК ОПУБЛИКОВАННЫХ НАУЧНЫХ ТРУДОВ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Владимиров, Г. К. Хемилюминесцентная методика определения общей антиоксидантной активности в лекарственном растительном сырье / Г.К. Владимиров, Е.В. Сергунова, Д.Ю. Измайлов, Ю.А. Владимиров // Вестник Российского Государственного Медицинского Университета. 2016. № 2 С. 65-72.
- Владимиров, Г.К. Активированная хемилюминесценция как метод оценки радикалообразующей способности ткани мозга / А. М. Полимова, Г.Р. Хакимова, Г. К Владимиров и др. // Технологии живых систем. 2012. Т. 9, № 2. С. 3-13
- 3. Vladimirov, G.K. Structure of the complex of cytochrome c with cardiolipin in non-polar environment / G. K. Vladimirov, A. S. Vikulina, D. Volodkin, Y. A. Vladimirov // **Chemistry and Physics of Lipids**. 2018. Vol. 214. P. 35–45.
- 4. Vladimirov, G.K.The cytotoxic action of cytochrome c/cardiolipin nanocomplex (cyt-cl) on cancer cells in culture / Y. A. Vladimirov, S. Can, G. K. Vladimirov et al. // **Pharmaceutical Research**. 2017. Vol. 34, no. 6. P. 1264–1275
- 5. Владимиров, Г.К. Наносферы комплекса цитохрома с с кардиолипином (CYT-CL) липопероксидаза, запускающая апоптоз. Обзор / Владимиров Г.К., Нестерова А.М., Осипов А.Н., Владимиров Ю.А. // Свободные радикалы в химии и жизни: Сборник тезисов II Международной конференции Белоруссия, Минск, 2017. С. 9-10
- 6. Vladimirov, G.K. Investigation of the mechanism of peroxidase reactions catalyzed by the complex of cytochrome c with cardiolipin by means of kinetic chemiluminescence / G.K. Vladimirov // 9th International Conference «Biomaterials and nanobiomaterials: Recent advances safety-toxicology and ecology issues: Abstract Book Greece, Heraklion, 2018. P. 26-26

СПИСОК СОКРАЩЕНИЙ

БКЛ – кардиолипин, выделенный из сердца быка;

ДСР – динамическое светорассеяние

КЛ – кардиолипин;

МУР – малоугловое рассеяние рентгеновских лучей

ПО – программное обеспечение

TOKЛ - 1,1',2,2'-тетраолеилкардиолипин;

ФБ – фосфатный буферный раствор;

ХЛ – хемилюминесценция;

Цит-К Π – комплекс цитохрома c с кардиолипином;

ЦитС — цитохром c;

>Fe···S(Met80) – связь между гемовым железом и серой метионина, находящегося в 80-м положении