Мишра Апурва

МЕТАБОЛИЧЕСКАЯ АКТИВНОСТЬ КЛЕТОК АДИПОГЕННОЙ ДИФФЕРЕНЦИРОВКИ

1.5.4 — Биохимия

1.5.22 - Клеточная биология

АВТОРЕФЕРАТ

Диссертация на соискание ученой степени кандидата биологических наук

Москва

2022

Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего образования «Московский физико-технический институт (национальный исследовательский университет)» МФТИ

Научные	руководители

Доктор медицинских наук, профессор

Шестопалов Александр Вячеславович

Доктор медицинских наук, профессор, член-корр. РАН

Румянцев Сергей Александрович

Официальные оппоненты:

доктор медицинских наук, профессор, член. корр. РАН **Парфенова Елена Викторовна** Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова» Министерства здравоохранения Российской Федерации, заместитель генерального директора, директор института экспериментальной кардиологии

доктор биологических наук, член-корр. РАН **Воротеляк Екатерина Андреевна** Федеральное государственное бюджетное учреждение науки «Институт биологии развития им. Н.К. Кольцова» РАН, заведующий лабораторией клеточной биологии

Ведущая организация:

Федеральное	государство	енное	бюджетное	е образовател	ьное	учрежде	ние	высшего
образования	«Кубанский	госуд	арственный	медицинский	унив	ерситет»	Мин	истерства
здравоохране	ния Российск	ой Фед	церации					

С диссертацией можно ознакомиться в библиотеке Федерального государственного автономного образовательного учреждения высшего образования «Российский национального исследовательского медицинского университета им. Н.И. Пирогова» Министерства здравоохранения Российской Федерации по адресу: г. Москва 117997, ул. Островитянова д. 1, и на сайте http://rsmu.ru

Автореферат разослан «___»_____20____ г.

Ученый секретарь диссертационного совета, доктор медицинских наук, профессор

L

Алла Анатольевна Кягова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Ожирение, метаболический синдром и сахарный диабет 2 типа (СД2) представляют собой одни из самых серьезных медико-социальных проблем в большинстве стран мира. По данным ВОЗ с 1975 по 2016 г число людей, страдающих ожирением, во всем мире выросло более чем втрое [И. И. Дедов и соавт., 2017]. В 2016 году более 1,9 миллиарда взрослых старше 18 лет имели избыточный вес. Из них свыше 650 миллионов страдали ожирением, что составило 13% взрослого населения планеты (11% мужчин и 15% женщин). Также отмечено, что 340 млн детей и подростков в возрасте от 5 до 19 лет страдали избыточным весом или ожирением [И. И. Дедов и соавт., 2017].

В исследованиях последних двух десятилетий пристальное внимание многих ученых сосредоточено на изучении роли жировой ткани в развитии различных фенотипов ожирения, инсулинорезистентности, СД2, саркопении и целого ряда других патологий. Кроме того, ожирение рассматривается не просто как гипертрофия и гиперплазия адипоцитов, а как воспалительное ремоделирование жировой ткани [van Greevenbroek et. al., 2016]. Общепризнано, что хроническое воспаление в жировой ткани считается решающим фактором риска развития инсулинорезистентности и СД2 у лиц с ожирением. Триггеры воспаления жировой ткани до сих пор плохо определены. Однако, вызванное ожирением разрастание жировой ткани обеспечивает множество внутренних сигналов (например, гибель адипоцитов, гипоксию и механический стресс), способных инициировать воспалительную реакцию. Известно, что иммунная дисрегуляция в жировой ткани у лиц с ожирением, характеризуется инфильтрацией различными иммунными клетками. При ожирении до 40% жировой ткани могут составлять провоспалительные макрофаги, которые продуцируют множество провоспалительных цитокинов и вносят самый значимый вклад в воспалительное ремоделирование жировой ткани [Federica Zatterale et. al., 2020]. Также установлено, что адипоциты способны экспрессировать целый набор паттерн-распознающих рецепторов врожденного иммунитета (англ. pattern recognition receptors, PRR), таких как Toll-подобные рецепторы (англ. Toll-like receptors, TLR) 2, 3, 4, 7, 8, 9 [Bae et. al., 2014]. В последние несколько лет стали появляться сообщения о причастности TLR к регуляции различных функций адипоцитов [Корр et. al., 2009]. Данные исследования позволяют нам предположить, что патоген-ассоциированные молекулярные паттерны (англ. pathogen – associated molecular patterns, PAMP), источником которых и является кишечная микробиота, вовлечены в регуляцию функций адипоцитов.

Прогрессивно увеличивается количество публикаций, которые демонстрируют взаимосвязь между развитием ожирения и состоянием микробиоты кишечника. Однако, общепринятого понимания характерного микробиотического фенотипа у больных с ожирением и/или метаболическим синдромом пока нет [С. Torres-Fuentos 2017, L. Zhao 2013]. Есть актуальные работы, которые анализируют не только роль белой жировой ткани в развитии ожирения, а и термогенной жировой ткани, к которой относят как бурую, так и бежевую жировую ткань. Так, было установлено, что деплеция кишечной микробиоты стимулирует трансдифференцировку белых адипоцитов в бежевые адипоциты, что тормозит процесс развития ожирения [N. Suarez-Zamorano et. al., 2015]. Кроме того, показано, что трансплантация микробиоты животных, подвергшихся холодовому воздействию, повышает чувствительность к инсулину и активирует процесс бежевой трансдифференцировки [С. Chevalier et. al., 2015]. Таким образом, микробиота кишечника и ее молекулы — РАМР могут быть использованы для регуляции метаболической

активности жировой ткани. Однако в настоящее время подобный подход еще не изучен и не внедрен в медицинскую практику.

Существует еще один важный аспект, связанный с жировой тканью, – это применение ее стромально-васкулярной фракции (СВФ) в регенеративной медицине в качестве альтернативного источника клеточного материала [А. В. Веремеев и соавт., 2016]. Полученные из жировой ткани мезенхимальные стволовые клетки (МСК) активно используют в травматологии, пластической хирургии. Однако секреторный потенциал этих клеток, их способность отвечать на различные сигналы и изменение этих свойств в процессе адипогенной дифференцировки и бежевой трансдифференцировки изучены фрагментарно.

Физическая активность рекомендуется в качестве средства от ожирения и коморбидности, связанной с ним, на протяжении десятилетий. Эффекты ежедневных физических упражнений неоспоримы, но в понимании взаимосвязи между скелетными мышцами и жировой тканью существует пробел. Предполагается, что, как и жировая ткань, скелетные мышцы играют эндокринную роль, и цитокины, выделяемые ими, были названы миокинами. Миокины участвуют в стимуляции липолиза и бежевой трансдифференцировки [М. С. K. Severinsen and B. K. Pedersen, 2020].

Степень разработанности темы. Эндокринная функция адипоцитов известна с открытия первого адипокина – лептина – в 1994 году [Y. Zhang et. al., 1994]. Это коренным образом изменило представления о жировой ткани, которая стала рассматриваться не только как депонирующая, но и как эндокринная ткань, способная взаимодействовать с различными органами и системами, влияющими на энергетический обмен и участвующими во врожденном иммунитете. Кроме того, в 2009 и 2012 годах у взрослых людей были обнаружены два новых метаболически активных типа жировой ткани – бурая [М. Saito et. al., 2009] и бежевая [J. Wu et. al., 2012]. Хотя было показано, что белые и бурые адипоциты обладают различными функциями, основные сходства и различия между их секреторными профилями и общим метаболизмом еще предстоит понять.

Макрофаги и лимфоциты в жировой ткани активно влияют на метаболизм адипоцитов посредственно активации провосполительних сигнальных путей. Открытие TLR в адипоцитах обеспечило дополнительное внимание к изучению связи между жировой тканью и врожденной иммунной системой. Регуляторная роль агонистов TLR — PAMP, таких как липополисахарид (англ. lipopolysaccharide LPS), была изучена в адипоцитах [М. Fresno et. al., 2011], но другие молекулы, такие как флагеллин, не изучались так широко. PAMP в недавнем прошлом привлекли большое внимание в биологии адипоцитов из-за оси «микробиота—жировая ткань», которая нарушается во время воспаления, вызванного ожирением и/или СД2.

Было показано, что по происхождению бурые адипоциты ближе к скелетным миоцитам, чем к белым адипоцитам [J. Wu et. al., 2015]. Это привело к гипотезе, что эти два вида могут иметь некоторые параллели в функционировании, в том числе в термогенезе. Влияние миокинов на адипоциты и их сигнальный путь также пока исследованы недостаточно. Ось «жировая ткань — микробиота», в частности, имеет очень сильную связь с, возможно, наиболее определяющим метаболическим процессом адипоцитов — липолизом.

На основании вышесказанного мы предполагаем, что регуляторные оси «микробиота – PAMP – жировая ткань» и «мышцы – миокины – жировая ткань» играют большое значение в регуляции адипогенеза, метаболической и эндокринной функции жировой ткани.

Цель исследования - установить особенности секреторной и метаболической активности клеток адипоцитов различной дифференцировки при стимуляции PAMP и миокинами.

Задачи исследования:

- 1. Исследовать иммуногистохимическую характеристику клеток адипогенной дифференцировки;
- 2. Изучить уровень экспрессии генов TLR, провоспалительных цитокинов и транскрипционных факторов в мезенхимальных стволовых клетках (МСК) подкожной жировой ткани и в клетках различных линий адипогенной дифференцировки при стимуляции PAMP и миокинами;
- 3. Определить влияние PAMP и миокинов на содержание компонентов системы липолиза общей и фосфорилированной (Ser552) форм гормон-чувствительной липазы (англ. hormone sensitive lipase, HSL) в клетках различных линий адипогенной дифференцировки;
- 4. Определить содержание провоспалительных цитокинов в супернатантах культур клеток различной адипогенной дифференцировки при стимуляции PAMP и миокинами;
- 5. Изучить содержание адипокинов в супернатантах культур клеток различной адипогенной дифференцировки при стимуляции РАМР и миокинами;
- 6. Изучить содержание факторов роста в супернатантах культур клеток различной адипогенной дифференцировки при стимуляции РАМР и миокинами.

Научная новизна:

- 1. Впервые охарактеризована дифференцировка мезенхимальных стволовых клеток подкожной жировой ткани человека в три метаболически различные культуры адипоцитов: белые, буроподобные [А. Д. Егоров и соавт., 2015] *MYF5*(-) (бежевые) и буроподобные *MYF5*(+) (бурые);
- 2. Впервые охарактеризованы эффекты стимуляции мезенхимальных стволовых клеток, белых, буроподобных *MYF5*(-) и буроподобных *MYF5*(+) адипоцитов человека *in vitro* бактериальным белком флагеллином;
- 3. Впервые изучено действие новых миокинов метеорин подобного белка (METRNL) и β -аминоизомасляной кислоты (BAIBA) на мезенхимальные стволовые клетки, белые, буроподобные MYF5(-) и буроподобные MYF5(+) адипоциты человека $in\ vitro$;
- 4. Впервые определена экспрессия генов TLR и провоспалительных цитокинов в буроподобных MYF5(-) и буроподобных MYF5(+) культурах адипоцитов человека при стимуляции PAMP и миокинами;
- 5. Впервые дана сравнительная характеристика секреторных профилей белых, буроподобных MYF5(-) и буроподобных MYF5(+) адипоцитов, дифференцированных от мезенхимальных стволовых клеток жировой ткани человека;
- 6. Впервые охарактеризованы изменения в содержании общей и активной формы гормон-чувствительной липазы (HSL) в белых, буроподобных *MYF5*(-) и буроподобных *MYF5*(+) адипоцитах человека после инкубации с PAMP и миокинами:
- 7. Впервые показано присутствие инсулина в супернатантах культур белых адипоцитов человека *in vitro*.

Теоретическая и практическая значимость исследования.

В настоящей работе впервые была осуществлена дифференцировка мезенхимальных стволовых клеток (МСК), полученных из жировой ткани человека, в три метаболически различные линии адипогенной дифференцировки.

Также было показано регуляторное влияние флагеллина на функционирование МСК и на продукты их адипогенной дифференцировки. Это позволяет лучше понять механизмы регуляторной оси «микробиота – жировая ткань», которая имеет отношение к ожирению и его коморбидности. Кроме того, исследовано влияние миокинов METRNL и BAIBA на эти культуры клеток. Результаты работы позволяют детализировать механизмы участия регуляторных осей «микробиота – PAMP – жировая ткань» и «мышцы – миокины – жировая ткань» в регуляции процессов адипогенеза, «бежевой» трансдифференцировки и активации бурой жировой ткани.

Практическая ценность результатов диссертации заключается в том, что исследования, проведенные *in vitro*, позволили лучше понять регуляцию метаболического функционирования белых, буроподобных MYF5(-) и буроподобных MYF5(+) адипоцитов на клеточном уровне, что может способствовать определению новых направлений профилактики и лечения ожирения, метаболического синдрома, кахексии и т.д. Кроме того, охарактеризованный секреторный и метаболический потенциал МСК позволит уточнить и оптимизировать их применение в регенеративной медицине.

Методология и методы исследования. Сбор данных и обработка полученных результатов проводились соответственно разработанной диссертантом схеме исследования, в которой были использованы адекватные поставленным задачам современные биохимические, клеточные, молекулярные, экспериментальные, лабораторные и статистические методы исследования.

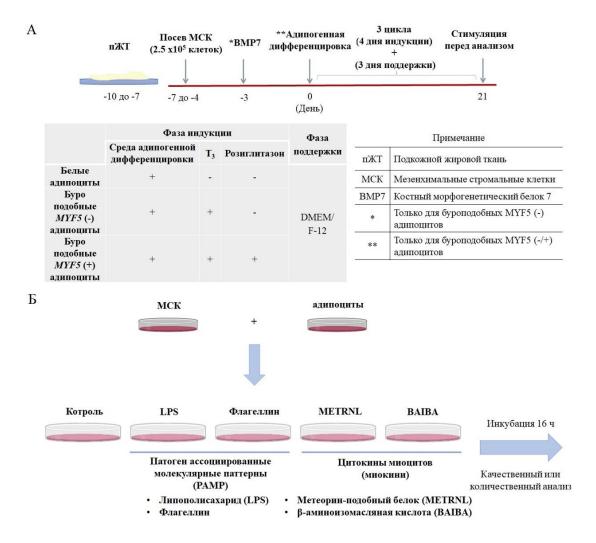
Степень достоверности и апробации работы. Достоверность результатов проведенной работы определяется достаточным объемом выполненных исследований, наличием групп сравнения, использованием современных методов исследования и статистической обработки полученных данных. Основные положения работы были доложены на Международном совместном семинаре МФТИ и Первого МГМУ им. И.М. Сеченова ФИЗТЕХМЕД III «Продуктивное долгожительство и регенеративные технологии», 2016 г., Долгопрудный; на І Международной научно-практической конференции студентов и молодых ученых «Современные аспекты медицинской реабилитации и санаторно-курортного лечения», 2019 г., Москва; на XV Всероссийской ежегодной конференции с международным участием «Проблема инфекции при критических состояниях» в рамках XXII Всероссийской конференции с международным участием «Жизнеобеспечение при критических состояниях», 2020 г., Москва.

Внедрение результатов исследование. Основные результаты и положения данного исследования внедрены на кафедре молекулярной и трансляционной медицины МФТИ, г. Долгопрудный, и на кафедре биохимии и молекулярной биологии РНИМУ им. Н. И. Пирогова, г. Москва.

Публикации. Всего по материалам диссертационной работы опубликовано 8 статей и тезисов докладов, в том числе 6 из них — в журналах, включенных в Перечень рецензируемых научных изданий или входящих в международные реферативные базы данных и системы цитирования, рекомендованные ВАК при Минобрнауки России для опубликования основных научных результатов диссертаций на соискание ученой степени кандидата наук.

Личный вклад автора в исследование. Автором самостоятельно были проведены: анализ научной литературы, все описанные ниже исследования, а также статистический анализ полученных результатов.

Структура и объем диссертационной работы: Диссертация изложена на 151 страницах машинописного текста и состоит из введения, обзора литературы, главы «Материалы и методы», 4 глав собственных исследований, заключения, выводов, списка литературы. Работа иллюстрирована 36 рисунками и 27 таблицами. Указатель литературы содержит 241 публикаций, из них 4 отечественных и 237 зарубежных.


МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Протокол выделение МСК и иммунофенотипирование

В работе использовали 22 образца МСК, выделенных из подкожной жировой ткани, полученной в процессе косметической липосакции. Все доноры были женщинами в возрасте от 19 до 51 года без известных нарушений обмена веществ и с нормальным ИМТ ($<25~\rm kг/m^2$). Все доноры подписали информированное согласие на участие в исследовании. Для идентификации МСК образцы стромально-васкулярной фракции красили флуоресцентно-мечеными моноклональными антителами к следующим поверхностным антигенам: CD90 (2,5 мкг/1х10⁶ кл), CD29 (20 мкл/1х10⁶ кл), CD59 (1 мкг/1х10⁶ кл), CD34 (5 мкл/1х10⁶ кл), CD45 (3 мкг/1х10⁶ кл) (все Весктап Coulter, США) [А. Mishra et. al., 2019]. МСК из подкожной жировой ткани выделяли с использованием 0,2% коллагеназы І типа в течение 45 минут при 37°С на шейкере. Полученную стромально-васкулярную фракцию доводили до 80-85% конфлюентности с помощью базовой среды - DMEM/F12 с добавлением 2мМ L-глютамина, 10% ЭТС и 40 мкг/мл гентамицина. После того, как МСК были пересеяны как минимум 6 раз, был начат протокол адипогенной дифференцировки.

Методы культивирование адипоцитов

Белые адипоциты культивировали в среде MesenCult Adipogenic Differentiation Medium (Рис. 1а). Адипогенная дифференцировка буроподобных *MYF5*(-) и буроподобных *MYF5*(+) адипоцитов проводилась в чередующихся фазах индукции (4 дня) с последующим поддержанием (3 дня) в течение 21 дня. Культуру буроподобных *MYF5*(+) адипоцитов инкубировали с BMP7 в концентрации 125 нг/мл в течение 3 дней до начала индукции. Во время индукционной фазы, буроподобных *MYF5*(-) и буроподобных *MYF5*(+) адипоциты выращивались в среде MesenCult Adipogenic Differentiation Medium, с добавлением 1нМ трийодотрионина (Т₃) [H. Ohno et. al., 2012]. Для буроподобных *MYF5*(+) адипоцитов был также добавлен 1 мкМ розиглитазона [М. Н. Lee et. al., 2016]. Во время фазы поддержки адипоциты росли на базальной среде для МСК. В конце 21-дневного цикла дифференцировки клетки были инкубированы в течение 16 часов с одним из следующих стимуляторов (Рис. 16): липополисахарид (LPS), 1 мкг/мл; флагеллин, 10 нг/мл; метеоринподобный белок (METRNL), 5 мкМ; бета-аминоизомасляная кислота (BAIBA), 5 мкМ; изопротеренол, 5 мкМ.

Рисунок 1 — Дизайн эксперимента: (а) выделение МСК из подкожной жировой ткани и ее дифференцировка в белые, буроподобные MYF5 (-) и буроподобные MYF5 (+) адипоциты (б) стимуляция МСК и продуктов их адипогенной дифференцировки с помощью РАМР и миокинов

Иммуногистохимия

После начала протокола адипогенной дифференцировки адипогенез количественно оценивали путем наблюдения за появлением липидных вакуолей в культурах на 7-й, 14-й и 21-й дни с использованием фазового контраста. Клетки были зафиксированы в 10% формалине в течение 15 минут при температуре 4°С. Для окрашивания липидных вакуолей, ядер и митохондрий использовали следующие красители: LipidTOX Molecular Probes [1:100], 1 мкг/мл или 0,5 мкг/мл DAPI (4',6-диамидино-2-фенилиндол), и 1мМ MitoTracker® Orange. Для получения лучшего разрешения визуализации при анализе митохондрий клетки были выращены в планшетах Nunc TM LabTek TM вместо обычной 35 мм² чашки Петри. Анализ изображения был проведен при помощи ZEN 2012 (Blue Edition) – программного обеспечения Carl Zeiss Microscopy GmbH камеры AxioCam MRc 5.

<u>Определение активности HSL методом Вестерн-блот</u>

Лизаты клеток были получены при обработке лизисным буфером NP40. Белки в образцах денатурировали путем инкубации с 10% раствором SDS при 95°С в течение 10 мин. Образцы разбавляли до общей концентрации белка 1 мг/мл и загружали в гель. Затем белки переносили на нитроцеллюлозную мембрану (0,45 мкм), блокировали мембрану в 5% сухом обезжиренном молоке в течение 12 ч при 4°С. В качестве контрольного белка использовали IgG1 мышей, специфичный к α-тубулину человека, в разведении 1:15000, инкубировали 1 ч при 37°С. Затем использовали вторичные антитела с пероксидазной меткой в разведении 1:5000 в течение 1 ч при 37°С. После добавляли первичные антитела к HSL и фосфорилированной HSL (р-Ser552) в разведении 1:1000 (антитела кролика к белку HSL или HSL-Ser552 человека). В течение 1 ч инкубировали с вторичными антителами козы к иммуноглобулинам кролика, затем со стрептавидин-пероксидазой на шейкере при 37°С. Белок определяли с помощью субстрата ECL на приборе ChemiDoc XRS+ Bio-Rad.

Определение продуктов секреции методом ИФА и мультиплексного ИФА

Иммуноферментный анализ был выполнен для определение содержание FGF21 и TNF-α в супернатантах культур 10 доноров. Содержание ряда метаболитов (PD-L1, BDNF, FABP3, остеокрин, инсулин, NGF, лептин, адипонектин, IL-6, IL-8 и VEGF-A) в супернатантах было измерено при помощи мультиплексново ИФА на приборе MAGPIX (Luminex, США) в соответствие с инструкции производителя.

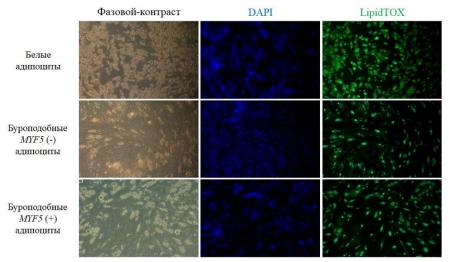
Определение экспрессии генов методом ПЦР в режиме реального времени

РНК из клеток использовали для качественного и количественного определения экспрессии генов методом ПЦР в реальном времени (РВ-ПЦР). РНК выделяли согласно протоколу производителя Евроген. ПЦР в режиме реального времени проводили на амплификаторе СFX 1000. Дополнительно, продукты амплификации анализировали в 1,5% агарозном геле на основе однократного трис-ацетатного буфера ТАЕ

Таблица 1 – Список генов, используемых в ПЦР-РВ

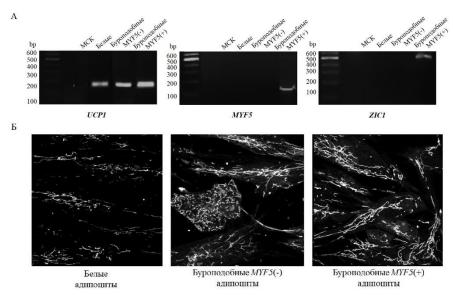
Название гена	Forward-праймер	Reverse-праймер			
GUSB	CAGAGCGAGTATGGAGCAGAA	CAAATGAGCTCTCCAACCACGT			
PGK1	TGTTCCGCATTCTGCAAGCC	GAACAGAACATCCTTGCCCAG			
TLR2	ATAGTGACTCCCAGGAGCTC	GACCCACACCATCCACAAAG			
TLR4	TCTCCTGCGTGAGACCAGAAA	TTAGGCTCTGATATGCCCCATCT			
TLR9	ATCCTTCCCTGTAGCTGCTGT	AGCATGATGGCCTGCACCA			
PTEN	TGGATTCGACTTAGACTTGACCT	GGTGGGTTATGGTCTTCAAAAGG			
SPI1	CTGGATGTTACAGGCGTGCAA	CAGGTAGGAGACCTGGTG			
IL6	ACTCACCTCTTCAGAACGAATTG	CCATCTTTGGAAGGTTCAGGTTG			
NFIA	TCTACGAGCTCCACAAAGCG	CCAGGATTGGTGACGTGGG			

HMGB1	TCTGTGCCTCGCTGAGGAAAA	AGCAGACATGGTCTTCCACCT
NFkB1	ACCAGGCTGGCAGCTCTTC	AACTCTGGCTCATATGGTTTCCCA
TNFa	GCTGCACTTTGGAGTGATCG	TGAAGAGGACCTGGGAGTAG
VEGFa	AGGGCAGAATCATCACGAAGT	AGGGTCTCGATTGGATGGCA
PRKAB1	CCCTTCCGAGCCCATAGTAAC	GCACTTTTGGGAATCCACCATT
IL1B	GCCAATCTTCATTGCTCAAGTGT	GGTCGGAGATTCGTAGCTGG
ARG1	TGGACAGACTAGGAATTGGCA	CCAGTCCGTCAACATCAAAACT
IL10	TACGGCGCTGTCATCGATTTC	TAGAGTCGCCACCCTGATGT
UCP1	CTAACGAAGGACCAACGGCT	TCCAGTCAGCAAGATTCCCAC
MYF5	ATGCCATCCGCTACATCGAGA	TGGACCAGACAGGACTGTTAC
ZIC1	GCTTCGCTAACAGCAGCGA	CTTGGGTACCAAGCCTTTGC


Статистическую обработку проводили непараметрическими методами с использованием критерия Уилкоксона с помощью программы OriginLab (OriginLab Corp., США). Данные представлены в виде медианы, 25-75 процентилей. Различия оценивали как статистически значимые при p<0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Внеклеточный матрикс в образцах липоаспирата обрабатывали с помощью коллагеназы I типа для получения СВФ, содержащей МСК, эндотелиальные клетки, перициты, лимфоциты, эритроциты, преадипоциты, макрофаги и др. Поскольку исходным материалом служила подкожная жировая ткань, клетки из нее были отрицательными на CD45, который является маркером гемопоэтических клеток. Для идентификации МСК жировой ткани, была выбрана панель из 4 маркеров клеточной поверхности: CD34, CD29, CD90 и CD59. Было обнаружено, что $\sim 10\%$ от общего числа жизнеспособных ядросодержащих клеток являются МСК жирового происхождения, что в 100 раз превышает количество, обычно выделяемое из образцов костного мозга.


Морфологическим признаком успешной адипогенной дифференцировки является появление липидных вакуолей в цитоплазме коммитированых клеток. В конце протокола адипогенной дифференцировки (21 день) количество адипоцитов в белом адипогенном протоколе было самым высоким (Рис. 2), за ним следовали бурые адипоциты и, наконец, бежевые адипоциты. Культуры клеток адипоцитов окрашивали LipidTOX-флуоресцентным нейтральным липидным красителем, подтверждающим наличие липидных вакуолей.

Три различные культуры клеток были качественно оценены на содержание митохондрий в их цитоплазме и наличие экспрессии определенных «бурых» адипогенных генов (UCP1) и факторов транскрипции (MYF5 и ZIC1).

Рисунок 2 – Окрашивание адипоцитов DAPI для визуализации ядра и LipidTOX для подтверждения наличия липидных вакуолей

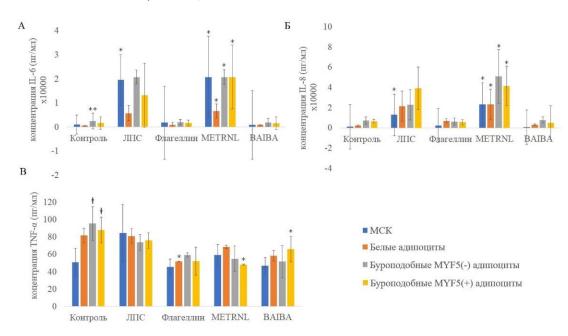
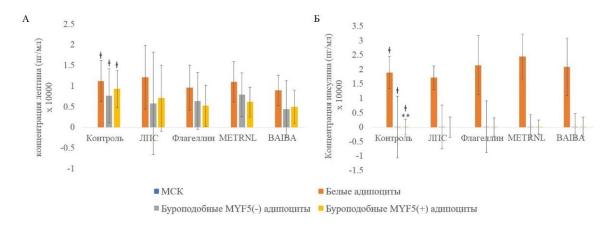

Белые адипоциты показали значительно меньшее количество митохондрий по сравнению с буроподобнами MYF5(-) и буроподобнами MYF5(+) адипоцитами (Рис. 3а). Термогенный ген — разобщающий белок 1 (UCP1) — экспрессировался в белых, буроподобных MYF5(-) и буроподобных MYF5(+) адипоцитах (Рис. 3а), с наибольшей экспрессией в буроподобных MYF5(+) адипоцитах. MYF5 и ZIC1 присутствовали только в буроподобных MYF5(+) адипоцитах. Фазовый контраст и окрашивание молекул липидов не выявили различий между тремя типами культур адипоцитов. Дополнительное окрашивание митохондрий в этих клеточных культурах показало, что белые адипоциты обладают гораздо меньшим количеством митохондрий по сравнению с буроподобными MYF5(+) и буроподобными MYF5(-) адипоцитами (Рис. 3б).

Рисунок 3 — Различие между тремя культурами адипоцитов, полученными в конце трехнедельного протокола адипогенной дифференцировки, в качественной (а) экспрессии буроподобных генов — *UCP1*, *MYF5*, *ZIC1* (б) сравнении цитоплазматических митохондрий в адипоцитах *in vitro*

Была исследована секреция IL-6 МСК и клетками культур их адипогенной дифференцировки (Рис. 4а). Установлено, что секреция IL-6 стромальными клетками жировой ткани значимо не отличалась от показателей клеток адипогенной дифференцировки. Вместе с тем, интактные культуры буроподобных MYF5(+) адипоцитов секретировали в 3 раза больше IL-6 по сравнению с белыми адипоцитами (Рис. 4а). Стимуляция LPS достоверно увеличила секрецию IL-6 белыми адипоцитами в 11 раз, но не вызвала изменений ни в одной из культур буроподобных MYF5(-) адипоцитов. Флагеллин не вызывал изменения секреции IL-6 ни в одной из исследованных клеточных культур. МЕТRNL оказывал наиболее значительное влияние на секрецию IL-6 во всех культурах адипоцитов, увеличивая секрецию в белых и буроподобных MYF5(+) адипоцитах в 12 раз, а в буроподобных MYF5(-) в 8 раз.

В нашем исследовании существенная разница уровней IL-8 между культурами адипоцитов и МСК не выявлена (Рис. 46). На МСК не влияли LPS, флагеллин и METRNL. LPS в культурах белых адипоцитов вызывал почти 10-кратное увеличение секреции по сравнению с интактными культурами. METRNL повышал секрецию IL-8 в культурах буроподобных MYF5(-) адипоцитов и буроподобных MYF5(+) адипоцитов в 6 раз и в 10 раз – в белых адипоцитах (Рис. 46).

Рисунок 4 – Влияние РАМР и миокинов на уровень секреции (а) IL-6, (б) IL-8 и (в) TNF-α (пг/мл) МСК и клетками адипогенной дифференцировки


- * р<0.01 статистически значимые различия в сравнении с интактными культурами
- ** p<0.01 статистически значимые различия в сравнении с белыми адипоцитами
- ‡ р<0.01 статистически значимые различия в сравнении с МСК

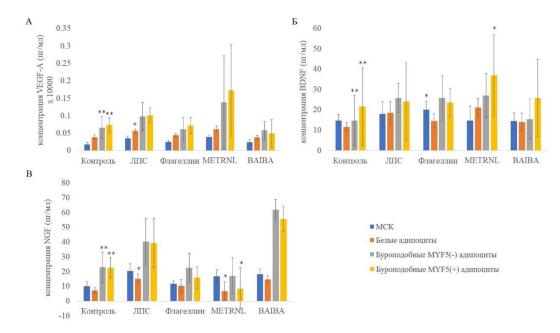
Результаты нашего исследования показали, что интактные культуры МСК и адипоцитов способны секретировать TNF- α (Рис. 4в). Стимуляция культур МСК агонистами TLR и миокинами не приводила к значительному изменению секреции TNF- α . Интактные культуры буроподобных MYF5(-) адипоцитов и буроподобных MYF5(+) адипоцитов

секретировали соответственно в 1,9 и 1,7 раза больше TNF- α , чем интактные культуры МСК. По сравнению с белыми интактными культурами секреция TNF- α буроподобными MYF5(+) адипоцитами была всего на 7% выше. Из PAMP только флагеллин достоверно изменял секрецию TNF- α белыми адипоцитами, снижая ее на 37%. LPS не вызывал существенных изменений в секреции TNF- α ни в одной из исследуемых культур. В культурах буроподобных MYF5(+) адипоцитов оба миокина — METRNL и BAIBA — значительно снижали секрецию TNF- α на 44% и 25% соответственно.

Результаты экспериментов показали, что интактные культуры МСК из всех исследованных нами адипокинов секретируют только адипсин, выработка которого не претерпевает статистически значимых изменений при стимуляции РАМР и миокинами. Адипогенная дифференцировка в культурах МСК вызывает индукцию секреции адипонектина и лептина (Рис. 5а) и более чем 10-кратное увеличение секреции адипсина. Примечательно, что секреция адипсина была более выражена в культурах буроподобных MYF5(-) и MYF5(+) адипоцитов по сравнению с белыми культурами.

Максимальная продукция адипонектина наблюдалась в культурах белых адипоцитов. Ее показатели в 17 раз превышали аналогичную продукцию в культурах буроподобных MYF5(+) и MYF5(-) адипоцитов, в то время как в секреции лептина культурами различных типов адипоцитов не отмечалось статистически значимых различий. Столь значительная по сравнению с лептином продукция адипонектина культурами белых адипоцитов связана с тем, что адипоциты находятся в стадии созревания.

Рисунок 5 – Влияние РАМР и миокинов на секрецию (а) лептина (пг/мл) (б) инсулина (пг/мл) МСК и клетками адипогенной дифференцировки ** p<0.01 – статистически значимые различия в сравнении с белыми адипоцитами


‡ р<0.01 – статистически значимые различия в сравнении с МСК

Как и в случае с лептином и адипонектином, культуры МСК не выделяли никакого количества инсулина (Рис. 5б). В сравнении, адипоциты секретировали инсулин, хотя секреция инсулина сильно различалась в буроподобных MYF5(-) и MYF5(+) культурах адипоцитов. В целом, в супернатантах интактных культур белых адипоцитов содержание инсулина было в 380 раз больше, чем в супернатантах интактных культур буроподобных MYF5(+) адипоцитов (Рис. 5б). При стимуляции РАМР или миокинами исследуемых культур значительных изменений в секреции инсулина не отмечено.

Все культуры адипогенной дифференцировки МСК были способны продуцировать значительные уровни FGF21. При этом адипоциты секретировали несколько более высокие количества по сравнению с МСК. Так, белые адипоциты секретировали на 9% больше FGF21, а буроподобные *МУF5*(-) адипоциты — на 22% больше, чем МСК в интактных культурах. Из всех используемых стимуляторов LPS наиболее значимо активировал секрецию во всех культурах МСК и адипоцитов. Он слабо увеличивал секрецию FGF21 в МСК, но в белых, буроподобных *МУF5*(-) и *МУF5*(+) культурах повышал ее на 22%, 9% и 15% соответственно. Примечательно, что флагеллин снижал секрецию FGF21 на 21% в белых адипоцитах и на 40% в буроподобных *МУF5*(-) адипоцитах. Миокин МЕТRNL снижал секрецию на 7% в белых адипоцитах, в то время как миокин BAIBA увеличивал секрецию FGF21 в буроподобных *МУF5*(-) адипоцитах на 38%.

МСК, а также культуры адипоцитов были способны секретировать VEGF-A (Рис. 6а). При этом минимальные уровни секреции наблюдались в культурах МСК, в то время как максимальные — в культурах буроподобных MYF5(+) адипоцитов. Интактные буроподобные MYF5(-) и буроподобные MYF5(+) адипоциты секретировали в 1,7 и почти в 2 раза больше VEGF-A по сравнению с культурами интактных белых адипоцитов.

Секретируемые уровни BDNF оставались неизменными в культурах МСК, несмотря на стимуляцию LPS или METRNL (Рис. 6б). Вместе с тем, флагеллин увеличивал секрецию BDNF в культурах МСК на 37%. Буроподобные MYF5(-) адипоциты в интактных условиях секретировали BDNF на 26% больше чем белые адипоциты, а буроподобные MYF5(+) — на 86%. Примечательно, METRNL увеличивал секрецию BDNF в 1,7 раза в буроподобных MYF5(+) адипоцитах.

Рисунок 6 – Влияние PAMP и миокинов на секрецию (a)VEGF-A (пг/мл) (б) BDNF (в) NGF (пг/мл) МСК и клетками адипогенной дифференцировки

* р<0.01 – статистически значимые различия в сравнении с интактными культурами

** p<0.01 – статистически значимые различия в сравнении с белыми адипоцитами

Уровни секреции NGF оставались неизменными в MCK как в интактных условиях, так и при стимуляции (Рис. 6в). По сравнению с белыми адипоцитами, как буроподобные MYF5(-), так и буроподобные MYF5(+) адипоциты секретировали в 3 раза больше NGF. LPS был способен удвоить секрецию NGF в культурах белых адипоцитов. METRNL снижал секрецию NGF в белых адипоцитах всего на 5,8% и в 2,6 раза — в буроподобных MYF5(-) адипоцитах.

Наши результаты показали, что в интактном состоянии в МСК отсутствует содержание HSL. Стимуляция МСК адреномиметиком изопротеренолом и миокинами не привела к появлению HSL (Рис. 7). В результате адипогенной дифференцировки активируется синтез HSL, о чем свидетельствует обнаружение этого фермента в белых, в буроподобных MYF5(-) и MYF5(+) адипоцитах. При этом максимальное содержание общей и фосфорилированной формы HSL обнаружено в культурах белых адипоцитов (Рис. 7-8). Содержание HSL в культурах буроподобных MYF5(+) адипоцитов было в 2,4 раза меньше, чем в белых, при этом содержание активной фосфорилированной HSL формы было значительно ниже (в 3,1 раза). В буроподобных MYF5(-) адипоцитах содержание HSL было минимальным — в 6,3 раз меньше, чем в белых адипоцитах. Таким образом, при различной адипогенной дифференцировке наблюдается разное содержание HSL, максимальное — в белых адипоцитах, при этом 56,94% — в активной фосфорилированной форме, а в буроподобных MYF5(+) адипоцитах — 67,28% в активной форме.

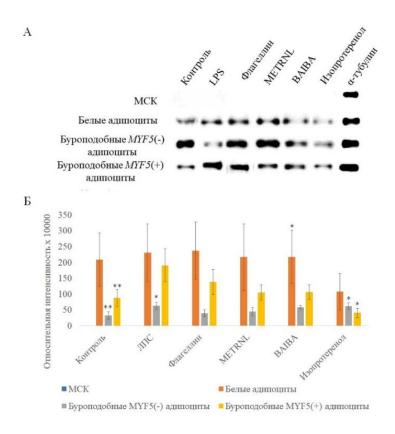


Рисунок 7 — Содержание HSL в клетках адипогенной дифференцировки: (а) полосы белка на нитроцеллюлозной мембране; (б) относительная интенсивность сигналов белка * p<0.01 — статистически значимые различия в сравнении с интактными культурами ** p<0.01 — статистически значимые различия в сравнении с белыми адипоцитами



Рисунок 8 — Содержание HSL — Ser552 в клетках адипогенной дифференцировки: (а) полосы белка на нитроцеллюлозной мембране; (б) относительная интенсивность сигналов белка

- * р<0.01 статистически значимые различия в сравнении с интактными культурами
- ** p<0.01 статистически значимые различия в сравнении с белыми адипоцитами

При активации клеток адреномиметиком изопротеренолом и PAMP происходили изменения в содержании общей и активированной HSL. Из всех стимуляторов только BAIBA значимо изменила количество общей HSL в белых адипоцитах на 4,3% (Рис. 7). Вместе с тем, LPS достоверно увеличивал содержание фосфорилированной HSL в белых адипоцитах в 2 раза. LPS увеличивал количество общей HSL в буроподобных MYF5(-) адипоцитах почти в 2 раза. Флагеллин воздействовал только на буроподобные MYF5(+) адипоциты, снижая уровень HSL-Ser552 на 24,4% (Рис. 8). Результаты стимуляции изопротеренолом показали неожиданные результаты — общее содержание HSL в буроподобных MYF5(-) адипоцитах увеличилось почти в 2 раза, а в буроподобных MYF5(+) адипоцитах снизилось в 2,1 раза.

Среди проанализированных нами рецепторов TLR2 показал наиболее выраженные изменения экспрессии соответствующей мРНК (Рис. 9а). Стимулированные культуры МСК и адипоцитов в целом демонстрировали изменение экспрессии генов TLR, но только изменения в белых и буроподобных MYF5(-) культурах адипоцитов были статистически значимыми. LPS увеличивал экспрессию TLR2 в 63 и 21 раз в белых и буроподобных MYF5(-) адипоцитах соответственно. В белых адипоцитах под влиянием METRNL экспрессия TLR2 увеличилась в 36 раз.

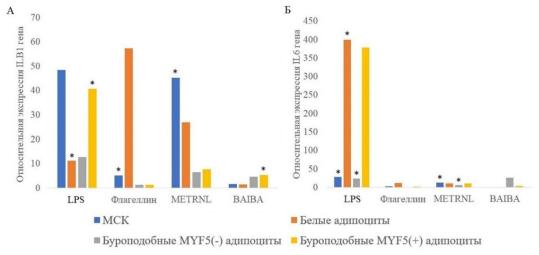


Рисунок 9 – Влияние РАМР и миокинов на экспрессию генов (а) TLR2 (б) TLR9 в МСК и клетках адипогенной дифференцировки

Ни в одной из культур при стимуляции не наблюдалось изменения экспрессии *TLR4*. Хотя хорошо известно, что LPS является мощным агонистом TLR4, в наших исследованиях не выявлено значительных изменений по сравнению с уровнем базальной экспрессии.

При стимуляции МСК и белые адипоциты в целом демонстрировали тенденцию к более высокой экспрессии *TLR9*, хотя и не всегда статистически значимой (Рис. 9б). В культурах МСК наблюдалось 3-кратное и 2-кратное увеличение экспрессии *TLR9* при стимуляции флагеллином и METRNL соответственно. Кроме того, в буроподобных *MYF5*(-) адипоцитах при стимуляции LPS экспрессия увеличилась в 16 раз.

Флагеллин увеличивал экспрессию IL1B только в культурах МСК в 4 раза относительно интактных культур (Рис. 10а). LPS увеличивал экспрессию IL1B в белых и буроподобных MYF5(+) адипоцитах в 2 и 5 раз соответственно. METRNL увеличивал синтез IL1B в МСК почти в 42 раза, а BAIBA — в 6 раз в буроподобных MYF5(+) адипоцитах по сравнению с интактными культурами.

Рисунок 10 – Влияние РАМР и миокинов на экспрессию генов (а) *IL1B* и (б) *IL6* в МСК и клетках адипогенной дифференцировки

^{*} p<0.05 – статистически значимые различия в сравнении с интактной клеточной культурой

^{*} p<0.05 – статистически значимые различия в сравнении с интактной клеточной культурой

Наиболее значительное влияние на экспрессию *IL6* в культурах оказал LPS (Рис. 10б). Произошло увеличение синтеза мРНК *IL6* в МСК, белых и буроподобных *MYF5*(-) адипоцитах в 17, 6 и 9 раз соответственно по сравнению с их интактными культурами. Между тем, METRNL повышал экспрессию *IL6* в МСК и буроподобных *MYF5*(-) адипоцитах в 11 и 9 раз по сравнению с их соответствующими интактными культурами. Общее изменение экспрессии *IL6* в культурах буроподобных *MYF5*(+) адипоцитов, инкубированных с РАМР или миокинами, оставалось незначительным.

В экспериментах не наблюдалось изменений в уровнях мРНК *TNFA* по сравнению с интактными культурами как в МСК, так и в адипоцитах.

Экспрессия SPI1 в МСК была увеличена в два раза при стимуляции флагеллином.

Экспрессия ядерного фактора 1 А-типа (англ. nuclear factor 1 А-type, NFIA) остается неизменной как в МСК, так и в культурах адипоцитов при стимуляции РАМР и миокинами.

LPS увеличивал экспрессию NFKB1 в белых и буроподобных MYF5(-) адипоцитах в 2,86 и 1,74 раза соответственно.

Экспрессия VEGFA в белых и буроподобных MYF5(-) адипоцитах была статистически значимо повышена при инкубации с LPS в 1,5 и 1,6 раза соответственно. Кроме того, METRNL увеличил экспрессию VEGFA почти в 2,8 раза в белых адипоцитах.

LPS и BAIBA увеличивали экспрессию PTEN в 6 и 1,7 раза в буроподобных MYF5(-) адипоцитах. Экспрессия мРНК VEGFA и PTEN осталась неизменной при стимуляции PAMP и миокинами в культурах МСК и буроподобных MYF5(+) адипоцитов.

ВЫВОДЫ

- 1. Мезенхимальные стволовые клетки жировой ткани способны дифференцироваться не только в белые, но и в буроподобные MYF55(-) и буроподобные MYF5(+) адипоциты, характеризующиеся экспрессией генов UCP1, MYF5, ZIC1 и увеличением общего количества митохондрий;
- 2. Патоген-ассоциированные молекулярные паттерны и миокины активируют экспрессию генов Toll-подобных рецепторов: в мезенхимальных стволовых клетках TLR9; в белых адипоцитах TLR2; в буроподобных MYF5(-) адипоцитах TLR2 и TLR9; и провоспалительных генов: в мезенхимальных стволовых клетках IL6 и IL1B; в белых и буроподобных MYF5(-) адипоцитах IL6 и IL1B; в буроподобных MYF5(+) адипоцитах IL1B;
- 3. Процесс адипогенной дифференцировки сопровождается увеличением содержания гормон-чувствительной липазы в культурах белых, буроподобных MYF5(-) и буроподобных MYF5(+) адипоцитах; количество активированной гормон-чувствительной липазы (Ser552) в белых адипоцитах заметно выше по сравнению с буроподобными MYF5(-) и буроподобными MYF5(+) адипоцитами; LPS и флагеллин увеличивают количество общей гормон-чувствительной липазы в белых и буроподобных MYF5(+) адипоцитах.
- 4. Патоген-ассоциированные молекулярные паттерны и миокины активируют секрецию провоспалительных цитокинов: в мезенхимальных стволовых клетках IL-6; в белых адипоцитах IL-6, IL-8, TNF- α ; в буроподобных MYF5(-) адипоцитах IL-6 и IL-8; в буроподобных MYF5(+) адипоцитах IL-8 и TNF- α ;
- 5. Продукты белой адипогенной дифференцировки характеризуются активной секрецией адипокинов. Патоген-ассоциированные молекулярные паттерны подавляют секрецию лептина буроподобными *MYF5*(-) и буроподобными *MYF5*(+) адипоцитами;
- 6. LPS и METRNL стимулируют секрецию факторов роста клетками различной адипогенной дифференцировки: VEGF-A, BDNF и NGF белыми адипоцитами и NGF буроподобными MYF5(-) и буроподобными MYF5(+) адипоцитами.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. *Влияние агонистов TLR и миокинов на секреторную активность клеток адипогенной дифференцировки/ А. В. Шестопалов, А. Мишра, А. М. Гапонов, С. А. Румянцев// Бюллетень экспериментальной биологии и медицины − 2021. − № 6. − С. 708-713.
- 2. *The Effect of LPS and Flagellin on the Process of Lipolysis in Mesenchymal Stromal Cells during Adipogenic Differentiation/ A. Mishra, E. V. Tsypandina, A. M. Gaponov, S. A. Roumiantsev, A. V. Shestopalov// Bull Exp Biol Med 2021. Vol. 170. P. 571–574.
- 3. *Влияние ЛПС и флагеллина на процессы липолиза в мезенхимных стромальных клетках при адипогенной дифференцировке/ А. Мишра, Е. В. Цыпандина, А. М. Гапонов, С. А. Румянцев, А. В. Шестопалов// Клеточные технологии в биологии и медицине − 2020. − № 4. − С. 284-288.
- 4. *Влияние миокинов на содержание гормон-чувствительной липазы в МСК и клетах адипогенной дифференцировки/ А. Мишра, Е. В. Цыпандина, А. М. Гапонов, С. А. Румянцев, Р. А. Ханферьян, А. В. Шестопалов// Крымский журнал экспериментальной и клинической медицины 2020. Т. 10. № 4. С. 29-35.
- 5. **А. Мишра,** Влияние бактериальных лигандов TLR4 и TLR5 на продукцию провоспалительных цитокинов толл-подобных рецепторов клетками жировой ткани человека/ **А. Мишра**, А. А. Александров, Е. В. Цыпандина, А. М. Гапонов, А. В. Шестопалов // Жизнеобеспечение при критических состояниях. Материалы XXII Всероссийская конференция с международным участием. Москва, Россия, 13-14 ноября 2020 г. С. 65-66.
- 6. **А. Мишра,** Роль бактериальных агонистов TLR4 и TLR5 в регуляции активности гормон чувствительной липазы популяциях адипоцитов человека/ **А. Мишра**, А. А. Александров, Е. В. Цыпандина, А. М. Гапонов, А. В. Шестопалов // Жизнеобеспечение при критических состояниях. Материалы XXII Всероссийская конференция с международным участием. Москва, Россия, 13-14 ноября 2020 г. С. 66-67.
- 7. *Эффективность выделения клеток стромально-васкулярной фракции из липоаспирата без ферментативной обработки/ А. Мишра, А. Семченкова, В. Жогов, А. Бадер, А. Мелерзанов// Врач 2019. № 8. С. 24-28.
- 8. *Цитосберегающая ультрозвуковая липосакция/А.В. Мелерзанов, А.А. Пенаев, А. Мишра, С. Тоски // / Врач 2017. №7. С. 22-24.

* - работа опубликована в журналах, включенных в Перечень рецензируемых научных изданий или входящих в международные реферативные базы данных и системы цитирования, рекомендованных ВАК при Минобрнауки России для опубликования основных научных результатов диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук и издания, приравненные к ним.

СПИСОК СОКРАЩЕНИЙ

СД2 – сахарный диабет 2 типа

TLR – толл-подобные рецепторы

РАМР – патоген-ассоциированные молекулярные паттерны

МСК – мезенхимальные стволовые клетки

HSL – гормон чувствительная липаза

METRNL – метеорин-подобный белок

ВАІВА – β-аминоизомасляная кислота

UCP1 – разобщающий белок-1 (термогенин)

Myf5 – миогенный фактор 5

Zic1 – «шинковый палец» 1

LPS – липополисахарид

IL – интерлейкин

VEGF-A – фактор роста эндотелия сосудов – А

FGF – фактор роста фибробластов

BDNF – нейротрофический фактор мозга

NGF – фактор роста нервов

TNF-α – фактор некроза опухоли-α

СВФ – стромально-васкулярная фракция

PRR – рецепторы опознавания паттерна

NFкВ – ядерный фактор «каппа-В»

NFIA – ядерный фактор 1 А-типа

PTEN – фосфатаза с двойной субстратной специфичностью