Пример теста. Рубежный контроль IV. Поли- и гетерофункциональные соединения, углеводы, нуклеотиды и биополимеры на их основе

соединения:	тривиальным и систематическим названиями 2-гидроксибутандиовая кислота
молочная кислота	
яблочная кислота	_2-гидроксипропановая кислота
малеиновая кислота	_2,3-дигидроксипропановая кислота
глицериновая кислота	_иис-бутендиовая кислота
 Окислители в биохимических прог ФАД; цистеин; дигидролипоевая кислота; О₂; Fe³⁺; производные гидрохинона 	qeccax:
3. Процессы восстановления: орто-бензохинон \rightarrow пирокатехин (катехо. $C_6H_5CH(NH_2)CH_2COOH \rightarrow C_6H_5CH(NH_3)$	
фумаровая кислота → янтарная кислота;	
хинон \rightarrow гидрохинон;	
$CH_3C(O)COOH \rightarrow CH_2=CH(OH)COOH$	
	$B, E^{o\prime}(HAД^+,H^+/HAДH) = -0.32 B. Возможен ли HAД^+ + H^+ в стандартных биологических условиях$
5. Соотнесите уравнение реакции с ее тиг	IOM:
ноос дезаминирование	C-CH ₂ -C-COOH (O) + CO ₂ + COOH + CO ₂
окислительное декарбоксилирование	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ароматическое гидроксилирование	
CH_2 — CH — $COOH + O_2 \xrightarrow{+HAД\Phi H, +H^+}$ HO — H_2O	CH ₂ -CH-COOH NH ₂
СН₃—СН—СОС дегидратация NН₂	$OH + HNO_2 \longrightarrow CH_3-CH-COOH + N_2 + H_2O$ OH OH

6. Класс (группа) и название продукта реакции:	
СН ₂ —С—СООН окислительное декарбоксилирование фенилэтаналь;	
ароматическая кислота;	
ароматический альдегид;	
2-фенилэтановая кислота;	
фенилуксусная кислота;	
фенилпировиноградная кислота	
7. Реакции, характерные для элиминирования,	
ацилирования,	
этерификации,	
декарбоксилирования,	
дегидрирования	
8. Продукты гидролиза креатинфосфата раствора гидроксида натрия: CH ₃ NH ₂ [CH ₃ NH ₂ Cl [CH ₃ NH ₂ CH ₂ COOH]Cl NH ₃ NH ₄ Cl CO ₂ Na ₃ PO ₄	
9. Ацетон — продукт: окислительного декарбоксилирования пировиноградной кислоты окисления изопропилового спирта декарбоксилирования ацетоуксусной кислоты дегидратации молочной кислоты	
10. Соотнесите вещество с характерным для него типом таутомерии: HOOCCH ₂ CCOOH кето-енольная таутомерия NH	

енамин-иминная таутомерия CH_2 =CH-COOHтаутомерия не характерна кольчато-цепная (цикло-оксо-таутомерия)_ 11. Соотнесите название моносахарида с его формулой: но-HO--OH D-глюкозамин_ CH₂OH -OH $-\mathsf{OH}$ CH₂OH **D**-галактозамин_ HO--OH -OH CH₂OH **D**-маннозамин -NH₂ -OH -OH **D**-рибозамин_ CH₂OH 12. Углеводы, способные к цикло-оксо таутомерии: *D*-глюкозамин глюкаровая кислота маннит фруктозо-6-фосфат галактулоза 13. Соотнесите название моносахарида с его классом: манноза_____ альдопентоза ксилоза кетотриоза

рибулоза_____ кетогексоза

дигидроксиацетон альдогексоза

14. Гиалуроновая кислота: разветвленный полисахарид

содержит $\beta(1\rightarrow 4)$ гликозидные связи

содержит фрагменты N-ацетилглюкозамина

гетерополисахарид

гомополисахарид

15. Соединение:

Напишите название в именительном падеже, с маленькой буквы, без указания конфигурации.

16. Оцените истинность суждений (верно/неверно):

Фруктоза и галактулоза — эпимеры по С-4;

Моносахариды реагируют со спиртами в кислой среде с образованием смеси аномерных гликозидов;

Альдоновые (гликоновые) кислоты — продукты окисления первичной спиртовой группы альдоз.

Метилирование моносахаридов в щелочной среде метилиодидом проходит только по гликозидной гидроксильной группе.

CH₂OH

17. Продукты восстановления: $HO \rightarrow H$?

H → OH H → OH CH₂OH

(напишите названия с маленькой буквы без указания конфигурации)

18. Общие свойства сахарозы и лактозы:

способность к цикло-оксотаутомерии

гидролиз

восстановление до многоатомных спиртов

хелатообразование

ацилирование

19. Продукты взаимодействия D-маннозы с этанолом в присутствии хлороводорода: смесь тетраэтил- α -D-маннопиранозы и тетраэтил β -D-маннопиранозы

O-этил- β -D-маннопиранозид

O-этил- α -D-маннопиранозид

2-метил- α -D-маннопираноза

окисляются в мягких условиях

20. Равновесная смесь, образующаяся при изомеризации D-галактозы в щелочной среде, содержит:

D-маннозу

D-галактозу

D-галактулозу

эпимер D-галактозы по C-2

D-глюкозу

21. Соотнесите название гетероциклического соединения с его формулой:

ароматическое соединение

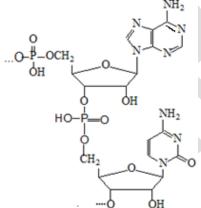
только кислота

только основание

амфотерное соединение

23. Амфотерными свойствами обладают:

24. Какой цифрой на рисунке обозначена сложноэфирная связь?


25. Енамин-иминная таутомерия возможна для:

26. Назовите соединение:

именительном падеже с маленькой буквы)

27. Ароматические соединения:

28. Фрагмент нуклеиновой кислоты:

фрагмент цепи ДНК (-dA-dC)

фрагмент цепи РНК (-А-С)

комплементарен фрагменту (–U-G-) во вторичной структуре

содержит макроэргическую связь

во вторичной структуре образует комплементарную пару $C \equiv G$

во вторичной структуре образует комплементарную пару A=U

29. Оцените истинность суждений (верно/неверно):

Ксантин – продукт гидроксилирования гипоксантина

Барбитуровая кислота — 2,4,6-тригидроксипурин

Все нуклеиновые основания, входящие в состав ДНК и РНК, могут подвергаться дезаминированию как химическими реагентами, так и ферментами-гидролазами

Макроэргические связи имеются в молекулах цАМФ

30. Мочевая кислота (верно/неверно): конечный продукт катаболизма пуриновых нуклеотидов образуется при гидроксилировании гуанина относится к гидроксипуринам существует как в лактимной, так и в лактамной формах