Учебная дисциплина «Неорганическая химия», специальность «Медицинская биохимия»

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель и задачи освоения дисциплины «Неорганическая химия»

Целью освоения дисциплины является: формирование необходимых как для обучения последующим учебным дисциплинам, так и для непосредственного формирования специалиста по направлению **медицинская биохимия** системных знаний о физико-химической сущности и механизмах химических процессов, происходящих в организме человека, закономерностях химического поведения основных биологически важных класссов неорганических соединений, необходимых для рассмотрения процессов, протекающих в живом организме на молекулярном, надмолекулярном и (или) клеточном уровнях.

Задачами дисциплины являются:

- а) приобретение студентами знаний в области теоретических основ неорганической химии,
- б) обучение студентов важнейшим методам неорганической химии, позволяющим применять полученные знания для понимания процессов, протекающих в живом организме на молекулярном и клеточном уровне,
 - в) обучение студентов умению использовать полученные теоретические знания для:
 - решения практических задач в области современной медицины
 - объяснения химических явлений, происходящих в природе
 - экологически грамотного поведения в окружающей среде
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы
- критической оценки достоверности химической информации, поступающей от различных источников.
 - г) обучение студентов грамотной работе в химической лаборатории

Разделы учебной дисциплины, которые должны быть усвоены при их изучении

№ п/п	Наименование раздела учебной дисциплины	Содержание раздела в дидактических единицах (темы разделов)
1	Введение	Типы и номенклатура неорганических соединений
2	Основные закономерности протекания химических реакций	1. Элементы химической термодинамики. Понятие о внутренней энергии, энтальпии, энтропии, энергии Гиббса. Тепловые эффекты химических реакций. Энергия Гиббса и направление химических процессов. 2. Химическое равновесие. Константа химического равновесия и её зависимость от различных факторов. Сдвиг химического равновесия. Принцип Ле-
3	Рострому	Шателье. 3. Элементы химической кинетики. Зависимость скорости реакции от различных факторов.
3	Растворы	 Термодинамика процесса растворения. Способы выражения состава растворов.

		Химический эквивалент. 3. Сильные электролиты. Понятие об активности и ионной силе раствора. 4. Протолитическая теория Бренстеда-Лоури. Протолитические равновесия. Водородный показатель рН. Константы кислотности и основности. Факторы влияющие на степень протолиза и константу протолитического равновесия. Теория кислот и оснований Льюиса. 5. Буферные растворы. Расчёт рН буферных растворов. Механизм буферного действия. 6. Растворы газов в жидкостях. Законы Генри Генри-Дальтона Сеченова. Зависимость растворимости газов от различных факторов. 7. Равновесия в насыщенном растворе трудно-
		растворимого сильного электролита. Произведение растворимости.
4	Строение атома	Квантово-механические принципы строения вещества. Орбитали, энергетические подуровни и уровни электронов в атоме. Принципы распределения электронов в атомах для невозбуждённого состояния.
5	Химическая связь и строение молекул	 Типы и характеристики химической связи. Метод валентных связей. Метод молекулярных орбиталей. Межмолекулярное взаимодействие.
6	Комплексные соединения	1. Природа химической связи в комплексных соединениях. Теория кристаллического поля. 2. Магнитные свойства и окраска комплексных соединений. 3. Равновесия в растворах комплексных соединений. Устойчивость комплексных соединений.
7	Окислительно- восстановительные свойства элементов и их соединений	OBP галогенов, перманганата калия, дихромата калия, азотной кислоты, перекиси водорода и др.
8	Химия элементов	Кислотно-основные, окислительно-восстановительные, комплексообразующие свойства элементов и их соединений