

«Дифференциальная диагностика желтух»

Методические рекомендации для студентов IV курса лечебного факультета

MOCKBA 2020

Автор/составитель, ответственный за предоставление методических материалов:

- Федеральное государственное автономное образовательное учреждение высшего образования "Российский национальный исследовательский медицинский университет имени Н.И. Пирогова" Министерства здравоохранения Российской Федерации
 - Варич Георгий Александрович, кандидат медицинских наук, доцент кафедры Факультетской хирургии № 2 Лечебного факультета.

Рецензент методических материалов:

- Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Министерства здравоохранения Российской Федерации
 - Болдин Борис Валентинович, профессор кафедры Факультетской хирургии № 2 лечебного факультета, заведующий кафедрой Факультетской хирургии № 2 Лечебного факультета.

Введение: Многообразие заболеваний и патологических состояний, приводящих к изменению окраски кожного покрова и слизистых оболочек с нормального на желтушную, диктует необходимость комплексного и системного подхода к изучению особенностей пигментного обмена в норме и при патологии.

Дело в том, что к трудностям освоения этой проблемы студентами относится тот факт, что на различных клинических кафедрах, разбирающих конкретные нозологии, осложняющиеся желтухой, в основном не дается общее представление о патофизиологии гипербилирубинемии. Так на кафедре гематологии и акушерства студенты изучают патогенез надпеченочных желтух, на кафедре терапии печеночных, а на кафедре хирургии подпеченочных. Недостаток общего взгляда на проблему значительно осложняет учебный процесс.

Врач первичного звена - это именно тот специалист, к которому не редко обращается пациент, столкнувшийся с этой довольно странной с его точки зрения проблемой.

Встречающееся часто среди студентов и молодых практикующих врачей мнение о сложности изучения патогенеза гипербилирубинемии и диф. диагностики желтух на самом деле лишено оснований.

Мы надеемся, что результатом освоения данного методического пособия будет структуризация знаний о многообразии причин гипербилирубинемии, возможностях современных лабораторных и инструментальных методов обследования пациентов с целью установления диагноза и назначения адекватного лечения уже на амбулаторно - поликлиническом этапе при первичном обращении пациента.

Структура учебного пособия:

- 1. Тема
- 2. Цель занятия
- 3. Мотивация
- 4. Определение понятия «Желтуха»
- 5. Виды желтух
- 5.1. Ложная желтуха
- 5.1.1 Причины развития ложной желтухи
- 5.2. Причины развития истинной желтухи
- 6. Фазы (звенья) пигментного обмена (от образования билирубина до его выведения из организма)
- 7. Классификация истинных желтух по этиологии
- 7.1 Надпеченочные желтухи (гемолитические)
- 7.1.1. Причина возникновения надпеченочных желтух
- 7.2 Гемолитическая желтуха новорожденных
- 7.2.1. Физиологическая желтуха новорожденных
- 7.2.2. Гемолитическая патологическая желтуха новорожденных
- 7.2.3. Лечение гемолитической желтухи новорожденных:
- 7.3 Гемолитическая желтуха у взрослых
- 7.3.1. Типы гемолитической желтухи
- 7.4 Лабораторные признаки и симптомы надпеченочной желтухи:
- 7.5 Алгоритм действия врача первичного звена при надпеченочной желтухе
- 8. Печеночные желтухи
- 8.1. Три формы печеночной желтухи
- 8.2. Лабораторные признаки и симптомы печеночной желтухи

- 8.3. Алгоритм действия врача первичного звена при печеночной желтухе
- 9. Подпеченочная желтуха (механическая желтуха).
- 9.1. Лабораторные признаки и симптомы подпеченочной (механической) желтухи:
- 9.1.2. Алгоритм обследования пациента с подпеченочной желтухой врачом первичного звена
- 10. Проверочные тесты
- 11. Список рекомендуемой литературы

1. Тема: «Дифференциальная диагностика желтух»

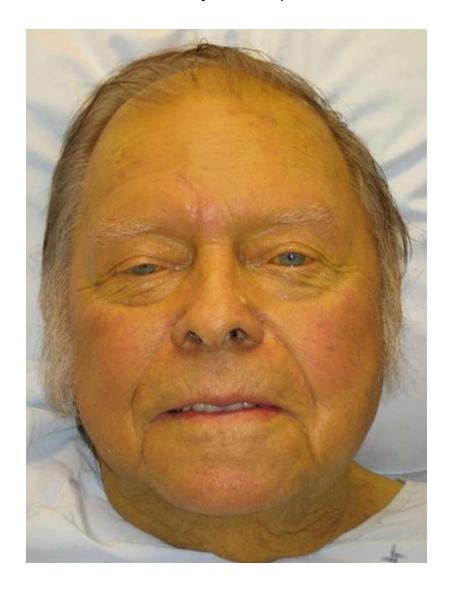
Место проведения занятия, оборудование: Стационар, учебная комната, операционная. По тематике больные, амбулаторные и стационарные карты и истории болезней больных, клинико - биохимические анализы, заключения инструментальных методов исследования, методические рекомендации, ситуационные задачи, тесты, алгоритмы по выполнению практических занятий, сценарий интерактивных методов преподавания, протоколы стандартов, материалы по теме взятые из интернета, слайды, видеофильмы.

2. Цель занятия:

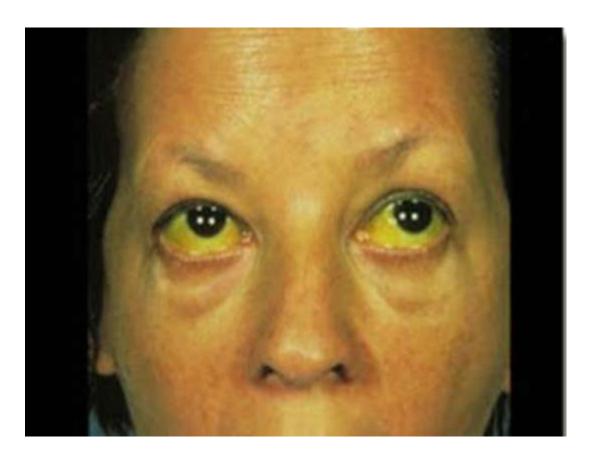
- Напомнить студентам основные аспекты нормального пигментного обмена.
- Сформировать у студентов представление о различных типах желтух и их патогенезе у пациентов, встречающихся в амбулаторно поликлинической практике.
- Ознакомить студентов с современными проблемами дифференциальной диагностики желтух, подчеркнуть актуальность темы особенно для врачей амбулаторно поликлинического звена.
- Ознакомить студентов с основными заболеваниями, приводящими к развитию гипербилирубинемии.
- Ознакомить студентов с особенностями лабораторной диагностики и клинических проявлений желтух различных типов.

3. Мотивация: Каждый практикующий врач независимо от его специальности, может встретится с пациентом, предъявляющим жалобы на изменение цвета кожного покрова и слизистых оболочек. К сожалению, врачи общего профиля традиционно относятся к желтухе как проявлению только инфекционного печени И не редко направляют поражения пациента инфекционные стационары, забывая о возможных других причинах гипербилирубинемии. Следствием таких ошибок является задержка направления пациента за помощью к хирургам или гематологам.

Мы надеемся, что изучив это методическое пособие студент или молодой врач любого профиля сможет быстро оценить ситуацию и поставить предварительный диагноз ЛИШЬ на основании лабораторных клинической картины, анамнеза И методов исследования, доступных практически в любой амбулатории. Для постановки же окончательного диагноза уже будут необходимы консультации узких специалистов и проведение дополнительных лабораторных и инструментальных методов исследования.


После изучения данного методического руководства и после общения с педагогом студент должен уметь выполнять следующее:

- Сбор жалоб и анамнеза;
- Правильно выполнять аускультацию, перкуссию, пальпацию.
- Правильно интерпретировать данные лабораторных и инструментальных методов исследования.
- Сформулировать и обосновать клинический диагноз.
- Определить показания к выполнению дополнительных лабораторных и инструментальных методов исследования,
- Определить показания госпитализации и возможному оперативному лечению.


Студент должен знать:

- Основные этапы нормального пигментного обмена.

- пути транспорта билирубина и основные физико-химические свойства связанного и несвязанного билирубина.
- этиологию и патогенез основных заболеваний и состояний, приводящих к нарушению пигментного обмена и гипербилирубинемии.
- принципы лабораторной и инструментальной дифференциальной диагностики заболеваний, приводящих к гипербилирубинемии.
- **4. Определение:** Желтуха это состояние, при котором нормальная окраска кожного покрова и слизистых оболочек изменяется на желтушное окрашивание.

Лицо мужчины с желтушным окрашиванием склер и кожи лица

Лицо женщины с желтушным окрашиванием склер и кожи лица

Лицо женщины монголоидной расы с желтушным окрашиванием склер. Смуглая кожа поглощает желтушную окраску

5. **Виды желтух**:

- Ложная желтуха
- Истинная желтуха
- 5.1. **Ложная желтуха** (синонимы: псевдожелтуха, каротиновая желтуха) желтушное окрашивание только кожи (но не слизистых оболочек).

5.1.1 Причины развития ложной желтухи:

- Накопление в коже каротинов при обильном употреблении в пищу моркови, свеклы, апельсинов, тыквы
- Возникает при приёме внутрь акрихина, пикриновой кислоты и некоторых других препаратов (в следствии нарушения техники безопасности на вредных химических производствах).

5.2. Причины развития истинной желтухи:

- **Истинная желтуха** — это всегда (!!!) следствие повышения концентрации общего билирубина (ОБ) в плазме крови.

Билирубин — это пигмент (желто-коричневого цвета), который образуется из гемоглобина при распаде эритроцитов (гемолизе). Пигментом билирубин является именно потому, что при растворении в биологической жидкости (плазма крови, моча и т.д.) или при контакте с тканью окрашивает их в желто-коричневый цвет.

Происхождение билирубина:

- Время жизни эритроцитов 120 дней.
- Ежедневно распадается около 1% всех циркулирующих эритроцитов. Соответственно клетками гемопоеза ежедневно синтезируется 1% всех циркулирующих эритроцитов (в противном случае развилась бы гемолитическая анемия).
- Гемоглобин эритроцитов распадается на железосодержащий гем и глобин.
- Из гема за сутки в клетках РЭС (ретикулоэндотелиальной системы) образуется 200 250 мг сухого вещества несвязанного билирубина (НБ), которое при растворении в плазме крови дает нормальную концентрацию билирубина от 3 до 20 мкмоль/ литр.

Для лучшего понимания патогенеза истинной желтухи ниже приведены основные фазы нормального пигментного обмена.

6. Фазы (звенья) пигментного обмена (от образования билирубина до его выведения из организма):

- I фаза: при гемолизе в клетках ретикулоэндотелия, (прежде всего в селезенке!) образуется токсичный (!) несвязанный билирубин (НБ), который не растворяется в воде, не фильтруется почками и в результате не попадает в мочу (соответственно и не участвует в формировании желтого цвета мочи).

Несвязанный билирубин (НБ) является **жирорастворимым(!!!)**, что позволяет ему **Негативно(!!!)** воздействовать на билипидный слой мембран клеток нейронов головного мозга.

(NB!!! Токсическое действие непрямого жирорастворимого билирубина обусловлено повреждением билипидного слоя клеточных мембран нейронов головного мозга, что

приводит к нарушению транспорта кислорода через них к нейрону. Вышеизложенное приводит к формированию хронической гипоксии головного мозга и нарушению его основных функций).

По селезеночной вене растворенный в плазме крови несвязанный билирубин вместе с током крови попадает в воротную вену печени и ее ветви.

Основная цель попадания несвязанного билирубина в венозную систему печени (система воротной вены) – захват НБ гепатоцитом и его конъюгация (связывание с молекулой глюкуроновой кислоты). В процесса результате ЭТОГО происходит билирубина жирорастворимой молекулы В водорастворимую. билирубин (связанный) Водорастворимый не обладает токсическим воздействием на билипидный слой мембран, не нарушает транспорт кислорода через мембрану в клетку нейронов и соответственно теряет свою токсичность.

- II фаза: захват несвязанного билирубина из крови гепатоцитами (гепатоцит – клетка печени, условно состоящая из трех отделов: полюс гепатоцита, имеющий единую мембрану с кровяным капилляром, центральный отдел и билиарный полюс гепатоцита, имеющий единую мембрану с желчным капилляром). Захват несвязанного билирубина из крови гепатоцитами - это ферментозависимый процесс. С целью облегчения СЛОЖНЫЙ распознавания гепатоцитом растворенного НБ, в плазме крови имеется белок Альбумин, который связывается с молекулой НБ. После связывания альбумина с НБ, образуется единая молекула, гораздо распознается которая проще И захватывается гепатоцитом. При количественной или функциональной мембране недостаточности ферментов, располагающихся на кровяного полюса гепатоцита, может развиться так называемая доброкачественная гипербилирубинемия (Болезнь Жильбера).
- III фаза (коньюгация): связывание билирубина с глюкуроновой кислотой происходит в центральном отделе гепатоцита. Перед коньюгацией происходит отщепление молекулы Альбумина от молекулы НБ. Далее Альбумин вновь через мембрану кровяного гепатоцита возвращается В кровоток, где очередной молекуле НБ. В прикрепляется К результате коньюгации образуется нетоксичный (!) связанный билирубин (СБ).

Главным отличием связанного билирубина (СБ) от несвязанного билирубина (НБ) является его водорастворимость и, соответственно, нетоксичность.

Водорастворимый (связанный) билирубин фильтруется почками и попадает в мочу, окрашивая ее при высокой концентрации в темнокоричневый цвет «цвет темного пива»).

- **IV** фаза: связанный билирубин через билиарный полюс гепатоцита экскретируется (попадает) в просвет желчного капилляра, где перемешивается с имеющейся в нем желчью.
- V фаза: связанный билирубин по желчным протокам вместе с желчью попадает в 12 перстную кишку.

В тонкой кишке связанный билирубин под влиянием бактериальных ферментов превращается в две фракции: стеркобилиноген и уробилиноген (обе эти фракции полностью сохраняют свой желто-коричневый цвет и функцию пигмента).

Стеркобилиноген превращается в стеркобилин и, перемешиваясь с содержимым тонкой кишки, окрашивает кал в коричневый цвет. Чем выше концентрация стеркобилина, тем коричневый цвет кала более насыщенный.

Уробилиноген, находясь в просвете тонкой кишки, всасывается ее стенкой вместе с нутриентами и, растворившись в плазме венозной крови, вновь попадает в воротную вену и вновь захватывается гепатоцитом, откуда доставляется в желчные капилляры и с желчью вновь попадает в двенадцатиперстную и тонкую кишку.

(NB!!! При печеночной недостаточности уробилиноген не захватывается вновь клетками печени, а через печеночные вены с кровью попадает в большой круг кровообращения достигает почек и выводится с мочой, окисляясь на воздухе до уробилина).

Но все же 15% уробилиногена (связанного билирубина, который в венозную кровь попал из просвета тонкой кишки) не захватывается гепатоцитами, а протекает мимо них и через печеночные вены вместе с кровотоком попадает в нижнюю полую вену. Далее уробилиноген вместе с кровью достигает правых отделов сердца, попадает в малый круг кровообращения, оттуда в левые отделы сердца, а затем и в аорту. По аорте уробилиноген

достигает почек, фильтруется и попадает в мочу. Вместе с мочой уробилиноген выводится в окружающую среду, окисляясь на воздухе до уробилина.

На этом этапе и заканчивается пигментный обмен.

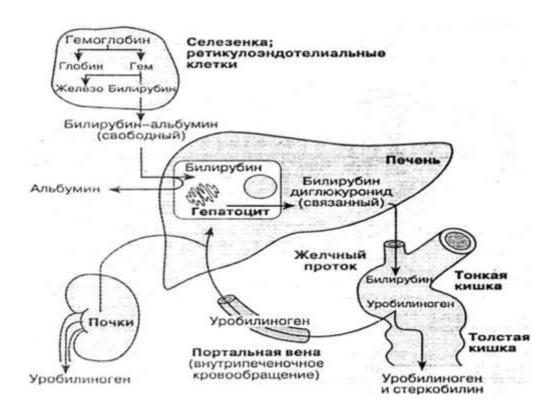
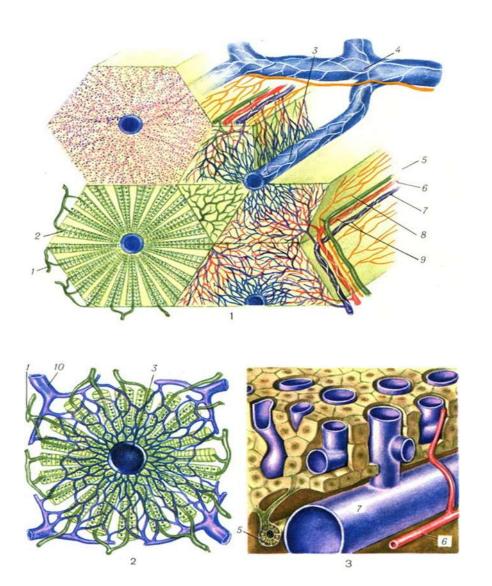



Схема физиологического пигментного обмена

Схемы строения печеночной дольки по Чайлду: 1—ductuli biliferi; 2 — желчные капилляры; 3 — v. centralis; 4 — v. sublobularis; 5 — ductus interlobularis; 6 —a. interlobularis; 7 —v. interlobularis; 8 — междольковые лимфатические капилляры; 9 — периваскулярное нервное сплетение; 10 — приток междольковых вен.

Таким образом можно сделать вывод, что в плазме крови одновременно циркулируют два вида молекул билирубина:

- 1. несвязанный билирубин (НБ), образованный после гемолиза эритроцитов
- 2. связанный билирубин (СБ), образованный после коньюгации несвязанного билирубина (последний попадает в кровоток в виде уробилиногена, то есть через венозную систему тонкой кишки, куда он всасывается из ее полости).

Напомним, что эти две молекулы НБ и СБ, кроме всего прочего, являются пигментами, то есть окрашивают в желто-коричневый цвет биологические жидкости и ткани, в которые они попадают. Чем больше суммарная концентрация этого пигмента, тем интенсивнее желтушная окраска. С целью количественной оценки красящей способности этих двух пигментов введено понятие: «Общий билирубин» (ОБ). Под общим билирубином (ОБ) мы понимаем сумму концентраций в плазме крови двух видов молекул: ОБ= НБ+СБ.

В норме фракция связанного билирубина (СБ) составляет менее 15 % от общего (ОБ).

ОБ — это важнейший показатель. Повышение концентрации общего билирубина в плазме крови выше физиологической нормы — 20 мкмоль/л свидетельствует о нарушении пигментного обмена в результате болезни и является поводом для исследования пациента с целью установления диагноза!

Важно знать, что врач не должен ориентироваться исключительно и только на цвет склер, уздечки языка и кожи. Отсутствие видимых изменений цвета не является гарантией отсутствия заболевания. Дело в том, что желтуха (желтушное окрашивание) кожи и иктеричность (желтая пигментация) склер заметны глазу только при концентрации ОБ в плазме крови более 50 мкмоль/л. Более низкая концентрация желтого пигмента билирубина в плазме крови не приводит к изменению окраски, так как не различима для человеческого глаза.

Представим, что у пациента, пришедшего на прием к врачу ОБ = 40 мкмоль/л. При этом цвет кожи и слизистых не изменится, хотя заболевание уже началось и прогрессирует. Только изучение биохимического анализа крови позволит заметить гипербилирубинемию и правильно поставить диагноз.

Одновременно с этим необходимо знать, что билирубином окрашиваются только те биологические жидкости, куда может проникнуть этот пигмент.

NB !!! Если билирубин не проникает через мембранный барьер некоторых желез, цвет биологической жидкости при желтухе не меняется

Так при желтухе билирубином окрашиваются:

- Молоко кормящих женщин
- Плевральный выпот
- Перикардиальный выпот
- Асцитическая жидкость
- Сперма

При желтухе не окрашиваются

- Слезы
- Слюна
- Желудочный сок
- Спинномозговая жидкость.

<u>Теперь переходим к изучению частных вопросов нарушения</u> пигментного обмена:

7. Классификация истинных желтух по этиологии:

- Надпеченочная желтуха (гемолитическая)
- Печеночная желтуха (паренхиматозная)
- Подпеченочная желтуха (механическая)

Как вы видите в основе этой классификации лежит печень как орган. выполняющий конъюгацию. Соответственно. если патологическая проблема, приведшая к развитию желтухи, лежит до момента начала конъюгации, то это <u>надпеченочная желтуха,</u> если имеет место заболевание самой печени, приведшее к нарушению процесса конъюгации, то это печеночная желтуха. И если процесс конъюгации несвязанного билирубина проходит без проблема нарушений, а заключается В транспорте

конъюгированного билирубина в составе желчи в тонкую кишку, то это называется подпеченочная желтуха.

7.1. Надпеченочные желтухи (гемолитические)

7.1.1. Причина возникновения надпеченочных желтух:

- под воздействием патологических факторов (их много) на эритроциты и органы РЭС возникает значительно ускоренный (патологический!!!) распад эритроцитов (гемолиз), что в итоге приводит к быстрому нарастанию концентрации несвязанного билирубина (НБ) в плазме крови. При быстром росте концентрации несвязанного билирубина (НБ) развивается относительная печеночная недостаточность:
- гепатоциты значительно увеличивают свою конъюгирующую функцию, однако справиться со всем объемом образовавшегося несвязанного билирубина (НБ) не имеют возможности. Это приводит к тому, что:
- 1. большая часть *несвязанного билирубина* остается в плазме крови и его концентрация возрастает.
- 2. концентрация в желчи связанного билирубина, образованного в результате усиления конъюгирующей функции печени, также возрастает. Это приводит к тому, что в тонкой кишке возрастает концентрация образовавшегося стеркобилиногена и уробилиногена.

Результатом этого является:

- 1. Цвет кала в результате большой концентрации в нем стеркобилиногена становится интенсивно темно-коричневой окраски
- 2. Концентрация уробилиногена в венозной крови тонкой кишки, а затем и в системе воротной вены значительно возрастает.
- 3. Гепатоциты не захватывают уробилиноген из крови как раньше (в результате развившейся относительной печеночной недостаточности они не могут захватить даже весь несвязанный билирубин), он проникает в печеночные вены, а затем по вышеизложенному пути достигает почек и мочи, окрашивая ее в цвет «темного пива».

- биохимическом анализе крови отмечается повышение общего концентрации билирубина за счет повышения обеих фракций, преимущественно концентрации за счет несвязанного билирубина.
- 5. В клиническом анализе крови отмечается хроническая анемия за счет ускорения гемолиза и развившейся относительной (или абсолютной) недостаточности функции системы гемопоеза.

7.2 Гемолитическая желтуха новорожденных

Новорожденный с желтушным окрашиванием кожи лица и конечностей

<u>Физиологическая желтуха новорожденных</u> – это повышение уровня билирубина в сыворотке крови у детей первых 3 суток жизни, является «пограничным состоянием», и не требует лечения.

Встречается физиологическая желтуха новорожденных у 60-80% здоровых доношенных новорожденных. Основная причина развития этой желтухи — ускоренная замена (гемолиз) эритроцитов с фетальным гемоглобином на эритроциты с гемоглобином взрослого человека в период 3 — 10 суток после

Для физиологической желтухи характерно:

- Удовлетворительное состояние ребенка
- Нормальные размеры печени и отсутствие признаков увеличения селезёнки
- Появление желтой окраски кожи после 24 часов жизни ребенка
- Максимальная выраженность желтой окраски лица, туловища и конечностей отмечается на 3-4 сутки жизни. Ладони и стопы не прокрашиваются.
- Не наблюдается патологического оттенка кожи (серого, зеленоватого, лимонного)
- Нормальная, соответственно возрасту окраска стула
- Быстрое уменьшение интенсивности и распространенности желтухи после 4х суток жизни, угасание к 8-10 дню.

7.2.1 Гемолитическая патологическая желтуха новорожденных

Гипербилирубинемия у новорождённых связана с массивным гемолизом эритроцитов в сосудах ребёнка во время родового акта, образованием большого количества несвязанного билирубина и временной неспособностью печени новорождённых к конъюгации. Это заболевание наиболее часто проявляется у недоношенных детей.

«Запуск» системы конъюгации несвязанного билирубина новорожденных происходит в норме за период от нескольких часов до нескольких дней после рождения. Активность конъюгирующей системы печени нарастает медленно и достигает уровня взрослых к концу 3-4-й недели жизни. У недоношенных детей «запуск» системы конъюгации билирубина задерживается. Это приводит к тому, что концентрация несвязанного билирубина в плазме крови значительно повышается и длительно не снижается.

Опасность желтухи у новорожденных заключается в возможности развития билирубиновой энцефалопатии (ядерной желтухи), которая встречается исключительно в период новорождённости и может привести к развитию глубокой умственной отсталости и детского церебрального паралича (ДЦП).

7.2.3. Лечение гемолитической желтухи новорожденных

С 1956 года основным методом лечения является фототерапия. Под билирубин влиянием света непрямой ИЗ жирорастворимого, превращается токсичного для головного мозга вещества, нетоксичную водорастворимую форму - люмирубин. Люмирубин быстро выводится из организма через желчь и мочу. Первый, кто это заметил была мед.сестра Вард, которая работала в отделении новорожденных госпиталя Эссекска, Англия.

Фототерапия

7.3 Гемолитическая желтуха у взрослых

7.3.1. Типы гемолитической желтухи:

Корпускулярная (1. биохимические дефекты эритроцитов. 2. гемоглобинопатии. 3. дефекты оболочек эритроцитов)

Экстракорпускулярная (переливание неодногруппной крови, воздействие гемолитических ядов, желтуха новорожденных).

Гемолиз в обширных гематомах, в очагах инфарктов, в полостях туловища (брюшная, грудная) после кровотечений.

Следствием быстрого появления в плазме крови большого (!) объема несвязанного билирубина (НБ) является развитие относительной (!!!) печеночной недостаточности

7.4 Лабораторные признаки и смптомы надпеченочной желтухи:

Главный признак - повышение ОБ за счет НБ.

- 1. ОБ редко превышает 90 мкмоль/л
- 2. Плейохромия (повышенное содержание желчных пигментов в желчи
 - 3. Анемия
 - 4. Увеличение количества ретикулоцитов (незрелых эритроцитов (повышенная регенерация эритроцитов).
- 5.Важный клинический признак отсутствие ахолии, наоборот характерна темная окраска кала и мочи (повышенное содержание стеркобилиногена и уробилиногена).

7.5 Алгоритм действия врача первичного звена при надпеченочной желтухе

- 1. клинический анализ крови (Hb, ретикулоциты)
- 2. Общий анализ мочи (уробилин)
- 3. Анализ кала на стеркобилин
- 4. Биохимический анализ крови (исследование ОБ, СБ, НБ, АЛТ, АСТ, ЩФ, ГГТ, Общий белок, Белковые фракции. Альфа-амилаза)
- 5. Исследование крови на наличие в ней антител к вирусам гепатита А, В и С.

- 6. УЗИ органов брюшной полости.
- 7. КТ- органов брюшной полости
- 8. Консультация врача гематолога, при необходимости госпитализация пациента в гематологическое или терапевтическое отделение

8. Печеночные желтухи

обусловлены Печеночные желтухи В ОСНОВНОМ поражением (воспалением) гепатоцитов и халангиол, что приводит к нарушению захвата клетками печени из крови несвязанного билирубина и к конъюгирующей функции гепатоцитов (связывание ухудшению с глюкуроновой кислотой). При этом если конъюгация билирубина частично сохранена, то экскреция (выброс) связанного билирубина в прекращается. Связанный практически выбрасывается из гепатоцита обратно в кровь. Соответственно, в желчь пигмент не попадает, стеркобилиноген и уробилиноген не образуются.

Как результат, в плазме крови повышается концентрация обеих фракций билирубина и показатель концентрации общего билирубина (ОБ). Связанный билирубин (растворимый в воде) достигает по кровотоку почек и мочи, окрашивая ее в цвет «темного пива». Кал же в отсутствии стеркобилиногена остается ахоличным (цвет «белой глины»).

8.1. Три формы печеночной желтухи:

- **Печеночно-клеточная** (повреждение структуры и нарушение функции гепатоцитов (цитолиз), что сопровождается развитием гепатоцеллюлярной недостаточности
- **Холестатическая** (внутрипеченочный холестаз, как на уровне гепатоцитов, так и на уровне желчных протоков)
- **Энзимопатичная** (наследственный гепатоз с нарушением внутрипеченочного образования билирубина)

Паренхиматозная желтуха

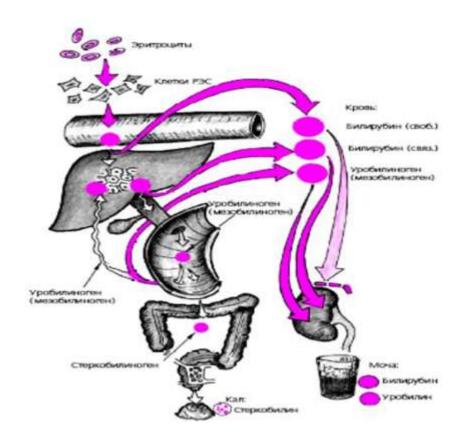


Схема патогенеза печеночной желтухи

Основные причины развития печеночной желтухи:

Инфекционные:	Неинфекционные:
Вирусные гепатиты А, В, С.	Токсические гепатиты
Герпетический гепатит	Цирроз печени
Цитомегаловирусный гепатит	
Желтая лихорадка	
Инфекционный мононуклеоз	
Возвратный тиф	

Кишечный иерсинеоз	
Орнитоз	
Лептоспироз	
Псевдотуберкулез	
Сальмонелез	
Сап	
Листериоз	
Амебеоз	
Сифилис	

8.2. Лабораторные признаки и симптомы печеночной желтухи

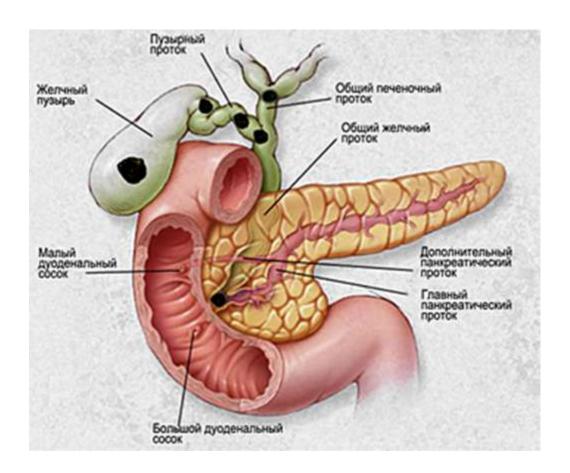
- 1. Повышение концентрации ОБ за счет повышения концентрации обеих фракций, преимущественно за счет НБ.
- 2. Отсутствие билирубина в составе желчи
- 3. Отсутствие стеркобилиногена и уробилиногена.
- 4. Ахоличный кал (цвет «белой глины»)
- 5. Моча цвета «темного пива»

8.3 Алгоритм действия врача первичного звена при печеночной желтухе

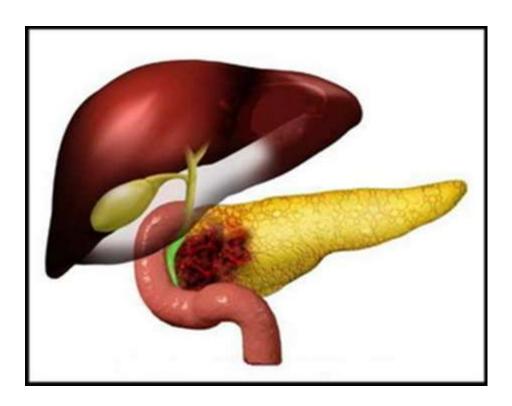
- Клинический анализ крови
- Общий анализ мочи
- Анализ кала на стеркобилин
- Биохимический анализ крови (исследование ОБ, СБ, НБ, АЛТ, АСТ, ЩФ, ГГТ, Общий белок, Белковые фракции. Альфа-амилаза)
- Исследование крови на наличие в ней антител к вирусам гепатита А, В и С.
- УЗИ органов брюшной полости.
- При подозрении на инфекционный генез желтухи срочная консультация врача-инфекциониста
- При неинфекционной желтухе консультация терапевта или гепатолога

9. Подпеченочная желтуха (механическая желтуха).

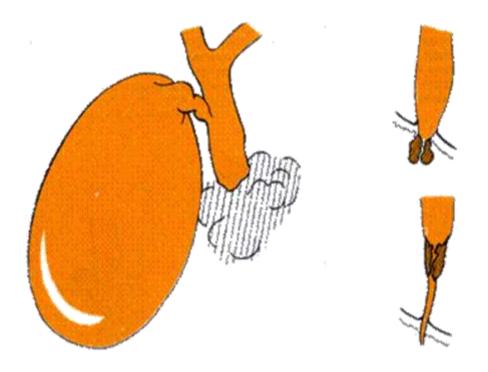
При подпеченочной желтухе процесс конъюгации несвязанного билирубина в гепатоците и экскреция его из печеночных клеток в


нарушены. Основной причиной желчные протоки не развития заболевания наличие механического является препятствия продвижению желчи со связанным билирубином в ее составе в 12 перстную кишку. В результате обтурации внепеченочных желчных протоков, продолжающейся секреции желчи, формируется вначале внепеченочная билиарная (желчная), а затем и внутрипеченочная билиарная гипертензия. Просвет желчных протоков увеличивается. вне-Как следствие билиарной гипертензии стенка оболочка, внутрипеченочных протоков истончается. Слизистая располагающаяся внутри крупных внутрипеченочных и внепеченочных желчных протоков, начинает всасывать содержимое протоков с целью внутрипротокового давления И профилактики механического разрыва желчных протоков. В кровь начинает попадать желчь с растворенным в ней связанным билирубином. Концентрация ОБ в плазме нарастает за счет прямой фракции СБ. При этом СБ достигает с кровотоком почек и окрашивает мочу в цвет «темного Уробилина, стеркобилина в нет. Кал обесцвечен кале (ахоличный кал (цвет белой глины)). При длительной обтурации внепеченочных желчных протоков, ведущих к внутрипеченочной билиарной гипертензии, может развиться синдром цитолиза (гибели) гепатоцитов: при этом активность АЛТ возрастает.

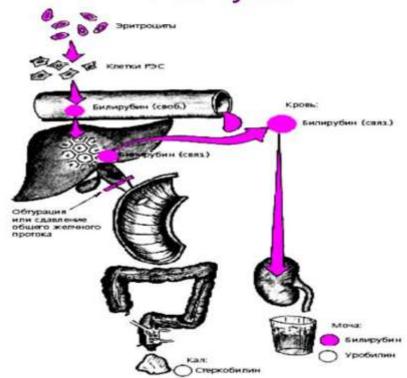
NB!!! Интересно заметить, что при механической желтухе в плазме крови значительно повышена концентрация связанного билирубина, растворимого в воде и, следовательно, нетоксичного. Но это совсем не означает, что у пациента отсутствует интоксикация.


Наоборот интоксикационный синдром будет ярко выражен. Просто токсином является на билирубин, а сама желчь, внедренная в кровоток.

Препятствия, вызывающие механическую желтуху


- Конкременты внутри- и внепеченочных желчных протоков
- Сдавление внепеченочных желчных протоков извне
- Рубцовые стриктуры внепеченочных желчных протоков
- Опухоль головки поджелудочной железы.
- Опухоль холедоха и БДС.

Конкремент терминального отдела холедоха



Опухоль головки поджелудочной железы

Опухоль холедоха и БДС

Механическая обтурационная желтуха

9.1. Лабораторные признаки и симптомы подпеченочной (механической) желтухи:

- 1. Повышение концентрации ОБ за счет повышения концентрации связанного билирубина. Длительное время концентрация несвязанного билирубина может оставаться на нормальном уровне.
- 2. Отсутствие стеркобилиногена и уробилиногена.
- 4. Ахоличный кал (цвет «белой глины»)
- Моча цвета «темного пива»

<u>9.2 Алгоритм обследования пациента с подпеченочной желтухой</u> врачом первичного звена

- 1. Клинический анализ крови
- 2. Общий анализ мочи на уробилин
- 3. Анализ кала на стеркобилин
- 4. Биохимический анализ крови (исследование ОБ, СБ, НБ, АЛТ, АСТ, ЩФ, ГГТ, Общий белок, Белковые фракции. Альфа-амилаза)
- 5. Исследование крови на наличие в ней антител к вирусам гепатита А, В и С.
- 6. УЗИ органов брюшной полости.
- 7. КТ- органов брюшной полости
- 8. МРТ в холангиорежиме
- 9. ЭРХПГ
- 10. Консультация хирургом

10. Тесты для самоконтроля:

- 1.Виды желтух:
- А. Средиземноморская желтуха
- Б. Истинная желтуха
- В. Геморрагическая желтуха
- Г. Папулезная желтуха
- Д. Желтуха «грязных рук»
- 2.Билирубин это:
- А. пигмент, который образуется из биливердина
- Б. пигмент, который образуется из гемоглобина
- В. пигмент, который образуется из гемосидерина

- Г. пигмент, который образуется из меланина Д. пигмент, который образуется из холестерина 3.Желтуха (желтушное окрашивание) и и пигментация) склер заметны глазу только при
- 3.Желтуха (желтушное окрашивание) и иктеричность (желая пигментация) склер заметны глазу только при концентрации ОБ в плазме крови более:
- А. 10 мкмоль/л
- Б. 20 мкмоль/л
- В. 30 мкмоль/л
- Г. 40 мкмоль/л
- Д. 50 мкмоль/л
- 4. При желтухе билирубином не окрашиваются:
- А. Молоко кормящих женщин
- Б. Плевральный выпот
- В. Слезы
- Г. Перикардиальный выпот
- Д. Асцитическая жидкость
- 5. Нормальные показатели концентрации общего билирубина в сыворотке крови колеблются от:
- А. от 0 до 100,0 мкмоль/л.
- Б. от 3,4 до 20,5 мкмоль/л.
- В. от 20-40 мкмоль/л.
- Г. от 40 до 60 мкмоль/л.
- Д. от 60 до 80 мкмоль/л.

Ответы:

- 1 **5**
- 2. Б
- 3. Д
- 4. B
- 5. Б
- 1. Желтуха тяжелой степени считается при уровне концентрации общего билирубина:
- А. выше 85 мкмоль/л.
- Б. выше 99 мкмоль/л.

- В. выше 120 мкмоль/л.
- Г. выше 170 мкмоль/л.
- Д. выше 300 мкмоль/л.
- 2. Несвязанный билирубин является:
- А. Нетоксичным, растворимым в воде
- Б. Токсичным, нерастворимым в воде
- В. Фильтруется почками, окрашивает мочу в темный цвет («цвет пива»)
- Г. Окрашивает кал в коричневый цвет
- Д. Всасывается в тонкой кишке и возвращается в печень по венам системы воротной вены
- 3. В гепатоците в норме происходят следующие процессы пигментного обмена, кроме:
- А. захват несвязанного билирубина из крови гепатоцитами
- Б. связывание билирубина с глюкуроновой кислотой
- В. Экскреция связанного билирубина в желчные капилляры
- Г. Экскреция связанного билирубина в кровеносные капилляры
- Д. Отщепление молекулы Альбумина от несвязанного билирубина и экскреция ее в кровеносные капилляры
- 4. Виды истинных желтух по этиологии:
- А. Надпеченочная желтуха (механическая)
- Б. Надпеченочная желтуха (паренхиматозная желтуха)
- В. Печеночная желтуха (механическая)
- Г. Печеночная (гемолитическая)
- Д. Подпеченочная (механическая)
- 5. Формы печеночной желтухи:
- А. Холестатическая
- Б. Пернициозная
- В. Гемолитическая
- Г. Механическая
- Д. Корпускулярная

Ответы:

- 1. Г
- 2. Б
- 3. B
- 4. Д

5. A

- 1. Формы печеночной желтухи:
- А. Корпускулярная
- Б. Печеночно-клеточная
- В. Пернициозная
- Г. Механическая
- Д. Гемолитическая
- 2. Печеночные желтухи инфекционного генеза все, кроме:
- А. Вирусные гепатиты А,В, С.
- Б. Инфекционный мононуклеоз
- В. Сап
- Г. Цирроз печени
- Д. Желтая лихорадка
- Инструментальные методы исследования при диагностики механической желтухи все, кроме:
- А. УЗИ
- Б. Пульмоносцинтиграфия
- B. KT
- Г. ЭРХПГ
- Д. МРТ
- 4. Причины развития подпеченочной желтухи все, кроме:
- А. Конкременты терминального отдела холедоха
- Б. Опухоль головки поджелудочной железы
- В. Опухоль холедоха
- Г. Лептоспироз
- Д. Рубцовая стриктура холедоха
- 5. Характерные лабораторные признаки механической желтухи все, кроме:
- А. Повышение концентрации общего билирубина в плазме крови за счет прямой фракции
- Б. Повышение концентрации общего билирубина в плазме крови за счет непрямой фракции
- В. Повышение уровня щелочной фофотазы в плазме крови
- Г. Возможно повышение уровня активности АЛТ в плазме крови

Д. Возможно повышение уровня активности АСТ в плазме крови

Ответы

- 1. Б
- 2. Г
- 3. Б
- 4. Г
- 5. Б
- 1. Причины развития подпеченочной желтухи все, кроме:
- А. Конкременты терминального отдела холедоха
- Б. Опухоль головки поджелудочной железы
- В. Опухоль холедоха
- Г. Лептоспироз
- Д. Рубцовая стриктура холедоха
- 2. При желтухе билирубином не окрашиваются:
- А. Молоко кормящих женщин
- Б. Плевральный выпот
- В. Слезы
- Г. Перикардиальный выпот
- Д. Асцитическая жидкость
- 3. Формы печеночной желтухи:
- А. Корпускулярная
- Б. Печеночно-клеточная
- В. Пернициозная
- Г. Механическая
- Д. Гемолитическая
- 4. Виды желтух:
- А. Средиземноморская желтуха
- Б. Истинная желтуха
- В. Геморрагическая желтуха
- Г. Папулезная желтуха
- Д. Желтуха «грязных рук»
- 5. Несвязанный билирубин является:
- А. Нетоксичным, растворимым в воде

- Б. Токсичным, нерастворимым в воде
- В. Фильтруется почками, окрашивает мочу в темный цвет («цвет пива»)
- Г. Окрашивает кал в коричневый цвет
- Д. Всасывается в тонкой кишке и возвращается в печень по венам системы воротной вены

Ответы:

- **1**. Г.
- 2. B.
- 3. Б.
- 4. Б.
- 5. Б.

11. Список рекомендуемой литературы:

- 1. Гончарик Т.А. Белорусский гос. медуниверситет 1-ая кафедра внутренних болезней «Дифференциальная диагностика желтух» учебно-методическое пособие. Минск 2009.
- 2. «Дифференциальная диагностика внутренних болезней». Глава 13. под редакцией проф. В.В. Щекотова, академика А.И. Мартынова, проф. А.А. Спасского. Москва. Издательская группа «ГЭОТАР-Медиа». Москва 2018
- 3. «Дифференциальная диагностика желтух в клинике инфекционных болезней» 2017 / Валишин Д.А., Мурзабаева Р.Т., Мамон А.П.,
- 4. «Некоторые аспекты дифференциальной диагностики заболеваний с желтушным синдромом в практике инфекциониста»
- 2017/ Т.Я. Чернобровкина, В.В. Никифоров, Я.Д. Янковская, С.В. Бурова, Е.В. Кардонова, О.А. Сафонова
- 5. «Синдром желтухи в практике педиатра» 2018 / Мохова О.Г., Канкасова М.Н., Поздеева О.С.