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Acute kidney injury
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Acute kidney injury (AKI) is a common, heterogeneous, multifactorial condition, which is part of the overarching 
syndrome of acute kidney diseases and disorders. This condition’s incidence highest in low-income and middle-
income countries. In the short term, AKI is associated with increased mortality, an increased risk of complications, 
extended stays in hospital, and high health-care costs. Long-term complications include chronic kidney disease, 
kidney failure, cardiovascular morbidity, and an increased risk of death. Several strategies are available to prevent and 
treat AKI in specific clinical contexts. Otherwise, AKI care is primarily supportive, focused on treatment of the 
underlying cause, prevention of further injury, management of complications, and short-term renal replacement 
therapy in case of refractory complications. Evidence confirming that AKI subphenotyping is necessary to identify 
precision-oriented interventions is growing. Long-term follow-up of individuals recovered from AKI is recommended 
but the most effective models of care remain unclear.

Introduction
Acute kidney injury (AKI) is a multifactorial condition 
affecting 10–15% of hospitalised patients and more than 
50% of patients in the intensive care unit (ICU).1,2 Global 
estimates of the incidence of AKI in the last 15 years 
varied, with population-based data ranging from 114 to 
174 people per 10 000 person-years, or a total of about 
13·3 million patients, worldwide in 2017.1,2 The incidence 
of AKI is highest in low-income and middle-income 
countries due to endemic diseases, contaminated water, 
and sociocultural factors.1 Evidence is emerging that AKI 
is associated with a high risk of serious short-term and 
long-term complications, affects organs other than 
the kidney, contributes to increased health-care costs, 
and requires subphenotyping to enable personalised 
management.3

Definition of AKI and acute kidney diseases 
(AKD)
In 2012, the Kidney Disease: Improving Global Outcomes 
(KDIGO) Clinical Practice Guideline for AKI established a 
harmonised definition and staging system for AKI that 
has since been extensively implemented within clinical 
practice, research, and public health initiatives (table 1).4 
The KDIGO guidelines placed AKI within an overarching 
syndrome of AKD, defined by serum creatinine, urine 
output and estimated glomerular filtration rate (eGFR), 
and structural criteria for kidney damage present for less 
than 3 months (figure 1, table 1).6 Within this framework, 
AKI is defined by a duration of up to 7 days. AKI is part of 
AKD, but AKD might occur without AKI. In fact, 
epidemiological data suggest that AKD without AKI is 
more prevalent than AKD with AKI. Similar to AKI, AKD 
is associated with an increased risk of death and 
development or progression of chronic kidney disease 
(CKD).7 Conceptually, AKD, AKI, and CKD are interlinked 
by their relationship with one another and by their criteria, 
complications, and outcomes.5 Use of both urine output 
and serum creatinine criteria improves the sensitivity of 
detection of AKI and refines prognostic estimates of risk 
for renal replacement therapy (RRT) and mortality.8,9

Epidemiology of AKI and AKD
AKI and AKD represent substantial health challenges 
worldwide, affecting patients in both hospital and 
community settings across diverse socioeconomic 
contexts (figure 2). Among studies that applied the 
KDIGO creatinine-based AKI definition in hospital 
settings, a meta-analysis of global studies reported a 
pooled incidence of AKI of 22% in adults and 34% in 
children.10 Duration and trajectory of AKI are also highly 
associated with mortality.11 Persistent AKI (>48 h) is 
associated with higher morbidity and mortality, and an 
increased risk of progression to AKD and CKD than 
transient AKI (≤48 h).5

In high-income countries, AKI is particularly common 
in: critically ill patients; individuals with sepsis, 
hypotension, or hypovolaemia; patients who had 
undergone a major surgery; or patients with nephrotoxic 
medication exposures. In low-income and middle-income 
countries, AKI and AKD are most frequently caused by: 
acute illnesses in the community; environmental factors 
leading to heat stress and dehydration; infections such as 
malaria, dengue fever, diarrheal illnesses; and exposure 
to venoms and poisons.12 A population-based study 
applying the KDIGO AKD criteria revealed an incidence 
of AKD without AKI of 3·8 per 100 adults tested, making 
this condition less common than CKD (10·6 per 
100 adults tested), but more common than AKI (1·4 per 
100 adults tested).7 77% of patients with AKD were 

Search strategy and selection criteria

Data for this Review were identified by searches of PubMed 
and MEDLINE for original research papers, narrative reviews, 
systematic reviews, and meta-analyses, published between 
May 24, 2004, and June 30, 2024. Search terms used were: 
“acute kidney injury”, “acute renal failure”, and “renal 
replacement therapy”. We gave preference to citations from 
the last 5 years published in English. However, we included 
older papers when studies from the last 5 years were not 
available. Additional references were selected from relevant 
articles and textbook chapters.

http://crossmark.crossref.org/dialog/?doi=10.1016/S0140-6736(24)02385-7&domain=pdf
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identified from outpatient lab testing. AKD, with or 
without AKI, has been associated with increased risk of 
incident CKD, kidney failure treated with RRT, and 
death.13,14

AKI diagnostics
Traditional investigations
Creatinine is eliminated by the kidneys, and under 
steady-state conditions, urinary excretion equals 
creatinine production. As markers of kidney function, 
both serum creatinine and urine output have limitations 
that warrant recognition (panel). Creatinine clearance is 
the volume of blood plasma cleared of creatinine per unit 
time. This creatinine clearance value can be measured by 
determining the creatinine concentration in a specified 
urine collection and contemporary mea sure ment of 
serum creatinine concen tration. Creatinine clearance 
includes the creatinine that is freely filtered by the 
glomeruli and creatinine that is secreted by the 
peritubular capillaries. Thus, creatinine clearance over-
estimates the GFR by approximately 10–20%. Despite the 
margin of error, creatinine clearance is an accepted 
method for measuring GFR. Repeated 4 h urine 
collections for creatinine clearance measurement in 
critically ill patients have been shown to allow earlier 
detection of AKI, and therefore better opportunities to 
control progression and recovery compared with the use 
of serum creatinine alone.15

In situations when creatinine concentration changes 
rapidly, the non-steady-state kinetic estimated GFR based 
on rate of creatinine production, initial serum creatinine, 
volume of distribution, and change over time, has been 
shown to be complementary to KDIGO AKI severity 
stages.16 However, determining rate of creatinine 
production and volume of distribution is challenging in 
clinical practice.

Functional criteria Structural criteria

NKD GFR ≥60 mL/min per 1·73 m²; stable serum creatinine. No kidney damage.

AKI Serum creatinine increase by ≥0·3 mg/dL (≥26·5 umol/L) within 48 h, or increase ≥1·5 times baseline known or presumed 
to have occurred within the previous 7 days; or urine output <0·5 mL/kg per h for 6 h. AKI stage 1: serum creatinine 
1·5–1·9 times higher than baseline within 7 days, or ≥0·3 mg/dL (≥26·5 umol/L) increase in 48 h or less, or urine output 
<0·5 mL/kg per h for 6–12 h. AKI stage 2: serum creatinine 2·0 to 2·9 times higher than baseline, or urine output 
<0·5 mL/kg per h for ≥12 h. AKI stage 3: in patients who are 18 years or older, serum creatinine increase ≥3·0 times baseline, 
or increase in serum creatinine to ≥4·0 mg/dL (≥353·6 umol/L), or urine output < 0·3mL/kg per h for ≥24 h, or anuria for 
≥12 h, or initiation of RRT independent of serum creatinine concentration. In patients younger than 18 years, decrease in 
eGFR to <35 mL/min per 1·73 m², or urine output <0·3mL/kg per h for ≥24 h, or anuria for ≥12 h, or initiation of RRT 
independent of serum creatinine concentration.

No criteria established.

AKD AKI, or GFR <60 mL/min per 1·73 m2 for <3 months, or decrease in GFR by ≥35%, or increase in serum creatinine by 
>50% for <3 months. No AKD staging criteria established.

Markers of structural 
damage present for 
<3 months.

CKD GFR <60 mL/min per 1·7m2 for ≥3 months. CKD staging: GFR categories. Kidney damage for 
≥3 months. ACR 
categories.

ACR=albumin-to-creatinine ratio. AKD=acute kidney disease. AKI=acute kidney injury. CKD=chronic kidney disease. eGFR=estimated glomerular filtration rate. 
GFR=glomerular filtration rate. NKD=no kidney disease. RRT=renal replacement therapy. 

Table 1: Kidney disease improving global outcomes criteria for kidney disease

Figure 1: AKI within the continuum of acute kidney disease and chronic kidney diseases
(A) Patients might have NKD or CKD at baseline. After the onset of acute deterioration of kidney function, patients 
might have AKI lasting for up to 7 days or AKD lasting for up to 3 months. The trajectory and prognosis of AKI are 
characterised by the severity, duration (persistent vs transient), degree of recovery, and recurrence. Kidney function 
might recover, or the patient might have reduced RFR, progress to CKD (ie, lasting for more than 3 months) or 
ESKD, or die. Patients with AKI and AKD are also at risk of non-kidney complications (eg, cardiovascular events, 
stroke, fracture, infection, malignancy, gastrointestinal bleeding, and reduced quality of life). (B) Examples of GFR 
trajectories in AKI and AKD. Lines on the graph represent: A—mild and transient (<48h) AKI with sustained 
recovery; B—mild and transient AKI with recurrence then recovery; C—severe and persistent (≥48h) AKI with late 
recovery; D—moderate and transient AKI with recurrence without recovery; E—severe persistent AKI without 
recovery; and F—death after severe AKI. After 90 days, kidney disease is assessed using CKD staging by glomerular 
filtration rate and albuminuria. Figure adapted from paper by Kellum and colleagues.5 AKD=acute kidney disease. 
AKI=acute kidney injury.CKD=chronic kidney disease. ESKD=end-stage kidney disease. GRF=glomerular filtration 
rate. NKD=no kidney disease. RFR=renal functional reserve.
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Albuminuria is a marker of glomerular and 
endothelial disease; proteinuria in the absence of 
albuminuria is a marker of increased production (eg, 
light chain proteinuria) or impaired tubular 
reabsorption of low molecular weight proteins. The 
urine albumin-to-creatinine ratio (uACR) and protein-
to-creatinine ratio provide quantitative assessment 
measures that account for urine concentration. 
However, urine creatinine excretion is decreased in 
AKI, which can falsely elevate uACR and protein-to-
creatinine ratio.

Microscopic examination of the urine sediment for 
renal tubular epithelial cells, granular casts, and cellular 
casts helps diagnose specific parenchymal kidney 
diseases causing AKI. High interoperator variability in 
identifying cellular casts has been reported, even among 
trained nephrologists, but the identification of granular 
casts appears to be more consistent.17

Furosemide stress test
The effectiveness of furosemide depends on tubular 
function. Therefore, the diuretic response after diuretic 
administration can be viewed as an indicator of tubular 
integrity. The furosemide stress test is a diagnostic tool, 
which involves the administration of 1 mg/kg of 
intravenous furosemide (or 1·5 mg/kg for patients with 
previous diuretic therapy). In critically ill adults with 
AKI, a urine output of <200 mL within 2 h had a 
sensitivity and specificity of 87% and 84%, respectively, 
for the progression to AKI stage 3.18

Imaging
Imaging studies are usually done to rule out urinary 
tract obstruction and assess kidney morphology and 
size. Point of care ultrasound has been shown to 
accurately detect hydronephrosis, evaluate intravascular 
filling, diagnose congestion, and be useful to monitor 
fluid and diuretic therapy. Some causes of urinary tract 
obstruction, such as retroperitoneal fibrosis and 
malignancy, might present without hydronephrosis and 
require pyelography or CT imaging for diagnosis. 
Similarly, dilatation of the urinary tract without 
obstruction might be observed after relief of obstruction 
with vesicoureteral reflux, after massive diuresis, and 
during pregnancy.

Doppler ultrasound of intrarenal venous flow is an 
emerging, non-invasive imaging technique to assess renal 
congestion. This method also allows to measure the renal 
resistive index to quantify the degree of vascular and renal 
parenchymal disease. Ultrasound imaging is operator-
dependent, prone to substantial inter-observer variability, 
and not routinely available. Advanced multiparametric 
MRI allows multiple quantitative measures of kidney 
morphology, tissue microstructure, oxygenation, blood 
flow, and perfusion to be collected simultaneously and 
non-invasively.19 However, these tools remain limited to 
the research setting.

New molecular serum and urine biomarkers for AKI
New molecular blood and urinary biomarkers for AKI 
have been intensely studied in terms of their ability for 
prediction, prevention, diagnosis, and management of 
AKI. Growing evidence supports their clinical applications 
in select clinical scenarios.20 Some biomarkers have 
received regulatory approval for clinical use and drug 
development (appendix pp 1–4).

Urinary dickkopf-3 is a kidney stress marker predictive 
of the risk of AKI, persistent kidney dysfunction, and RRT 
in patients receiving cardiac surgery.21 Measurement of 
the two cell cycle arrest markers IGFBP7 and TIMP-2 has 
been approved by the FDA and in Europe for prediction of 
moderate to severe AKI. CCL14 is a biomarker of renal 
inflammation, indicating persistence of severe AKI.22 
NGAL is a damage biomarker that was approved by the 
FDA in 2023 for predicting severe AKI in children.23 In 
patients with liver cirrhosis, this biomarker might help 
distinguish between acute tubular necrosis and 
hepatorenal syndrome, for which specific therapies are 
available.24,25 Urinary tumour necrosis factor (TNF), and 
CXCL9 are inflammatory cytokines with apparent use for 
distinguishing acute tubulointerstitial nephritis from 
acute tubular necrosis, including identifying patients who 

See Online for appendix

Figure 2: Acute kidney injury (AKI) incidence by region
Bar chart displaying incidence of AKI by region (blue), with stacked proportions of patients with Hospital-acquired  
(dark orange) versus Community-acquired (light orange)  AKI by regions. Adapted from the International Society 
of Nephrology 0by25 Global Snapshot.1 HA-AKI=hospital-acquired acute kidney injury. CA-AKI=community 
acquired acute kidney injury.
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might benefit from steroid therapy.26,27 Cystatin C is a 
functional biomarker that, unlike creatinine, is not 
influenced by muscle loss and might therefore improve 
the accuracy of GFR estimation after critical illness.28

Panels of molecular biomarkers, such as plasma 
TNFR1 and TNFR2, urinary MCP1, uromodulin, and 
EGF measured 3 months after AKI have been associated 
with progression of CKD and cardiovascular events,29,30 
and have potential for guiding long-term renal and 
cardiovascular management but further research is 
needed. In 2019, the Acute Disease Quality Initiative 
(ADQI) expert panel emphasised that biomarker testing 
should be informed by broader kidney health assessment, 
incorporating patient factors and exposures, and that 
validated biomarker tests had a role to identify patient 
populations who are likely to benefit from specific 
interventions.31

Pathophysiology of AKI 
The causes of AKI are diverse, and the pathological 
conditions associated with AKI are heterogeneous and 
complex.32 Preclinical studies have highlighted that 
different aetiologies of kidney injury elicit divergent 
responses at the molecular, cellular, and functional levels, 
simultaneously or in sequence (figure 3).33

Common types of AKI
Sepsis-associated AKI
Severe infection and sepsis are the most frequent 
aetiologies of AKI worldwide. AKI develops in about 
70% of patients with sepsis and often progresses to AKI 
stage 3.34,35 The term sepsis-associated AKI includes cases 
of sepsis-induced AKI, whereby the patient’s response to 
sepsis causes kidney injury directly, and cases in which 
sepsis-associated factors (such as therapeutic inter-
ventions, including nephrotoxins) contribute.

Multiple pathophysiological mechanisms appear to 
simultaneously contribute to sepsis-associated AKI, 
including systemic and renal inflam  mation, altered 
microcirculatory and endothelial function, intra-renal 
shunting, comple ment activation, renin–angio ten sin–
aldosterone system (RAAS) dysregulation, mitochondrial 
dysfunction, and metabolic reprogramming.35 Manage-
ment consists of rapid control of the underlying infection, 
individualised haemo dynamic and fluid resuscitation, 
and avoidance of further nephrotoxic insults.

AKI post-major surgery
Postoperative AKI is defined when KDIGO AKI criteria 
are met within 7 days of an operative intervention.36 
Postoperative AKI occurs in approximately 15% of non-
cardiac surgeries and 30–40% of cardiac surgeries, 
though rates vary depending on the type of surgery, 
patient risk factor profile, and whether urine output is 
included in the AKI diagnosis.37

The pathophysiology involves multiple mechanisms, 
including hypovolemia, vasodilation and decreased 
cardiac output secondary to anaesthetic drugs, and 
increased intra-abdominal pressure following induction 
of pneumoperitoneum. Systemic inflammation from 
surgical stress, large volume shifts, and nephrotoxin 
exposure also contribute. The AKI risk increases upon 
higher preoperative baseline proteinuria.38

Avoiding hypovolemia and hypotension before and 
during surgery is recommended, including avoidance of 
excessively restrictive fluid management.36,39,40 Maintain ing 
patients’ systolic blood pressure close to their usual blood 
pressure during the intraoperative period was associated 
with a significantly lower risk of postoperative AKI.41

Until autumn of 2024, cessation of use of RAAS 
inhibitors before surgery was recommended. However, 
the Stop-or-Not42 randomised controlled trial (RCT) 
including 2222 patients who were on RAAS inhibitors 
therapy for at least 3 months and scheduled to undergo a 
major non-cardiac surgery, showed that continuing 

Panel: Limitations of urine output and serum creatinine 
for identification of acute kidney injury

Urine output
• Risk of measurement error (eg, absence of a urinary 

catheter)
• Can be manipulated by diuretics
• Oliguria might be physiological (eg, during surgery)

Serum creatinine
• Affected by liver function, muscle mass and metabolism, 

recent (<6 h) meat-containing meal, and exogenous 
creatine intake

• Small increases can occur due to physiological and 
analytical variability, particularly with low baseline 
glomerular filtration rate (eg, chronic kidney disease)

• Can increase without true reduction in glomerular 
filtration rate, for instance in the setting of:

• Hemoconcentration (eg, diuresis)
• Inhibition of tubular secretion (eg, medications 

such as trimethoprim and cimetidine)
• Real increases might be concealed:

• by fluid resuscitation and volume expansion
• in case of malnutrition, liver disease, and muscle 

wasting during pregnancy, which is associated with 
physiological decrease of serum creatinine

• Some increases predict better long-term outcomes:
• Renin–angiotensin–aldosterone inhibitors can increase 

serum creatinine due to renal afferent arteriole 
vasodilation; however, relatively small increases soon 
after initiation predict long-term preservation of 
kidney function

• Sodium glucose-2 transporter inhibitors are associated 
with increases in serum creatinine concentration 
through tubuloglomerular feedback mechanisms 
leading to afferent arteriole constriction, yet improve 
cardiovascular and kidney outcomes and appear to 
lower the risk of acute kidney injury
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RAAS inhibitors therapy before surgery did not increase 
the risk of postoperative AKI compared with a 
discontinuation strategy (11% in both groups). However, 
patients in the RAAS inhibitors continuation group had 
a significantly  higher risk of intraoperative hypotension 
compared with patients in whom RAAS inhibitors 
therapy was discontinued (54% vs 41%). Thus, RAAS 
inhibitors can be continued perioperatively unless a 
particular concern for profound intraoperative 
hypotension exists.

Sodium-glucose co-transporter-2 (SGLT2) inhibitors 
are increasingly prescribed to patients with diabetes, 
CKD, or heart failure. They can cause an initial rise in 
serum creatinine and a decrease in GFR which is usually 
temporary. The American Diabetes Association 
recommends to avoid SGLT2 inhibitors in severely ill 
patients and during prolonged fasting and surgical 
procedures.43 However, the EMPEROR trial44 showed that 
abrupt cessation of SGLT2 inhibitors had negative 
consequences.45 Moreover, a meta-analysis of 13 SGLT2 
inhibitors trials in patients on chronic SGLT2 inhibitors 
therapy for at least 6 months concluded that the overall 
risk of AKI with SGLT2 inhibitors compared with placebo 
was reduced by 23% (relative risk 0·77, 95% CI 0·7–0·84). 
Thus, discontinuation appears appropriate in cases of 
shock, metabolic acidosis, or severe urinary tract 
infection but continuation should be considered in 
patients with strong indications, for instance with severe 
heart failure.

In the setting of cardiac surgery, off-pump cardio-
pulmonary bypass, compared with on-pump, confers a 
benefit of lower incidence of postoperative AKI.46,47 
Further, perioperative intravenous amino acid infusion 
reduced the risk of postoperative AKI in a multicentre 
RCT published in 2024.48 The association between 
perioperative non-steroidal anti-inflammatory drugs and 
AKI is unclear.49

Drug-associated AKI
Drug-associated kidney disease is estimated to account 
for 19–26% of all cases of AKI in hospitalised patients.50 
There are several different pathophysiological 
mechanisms that contribute to drug-associated AKI, 
including direct tubular injury, intratubular obstruction, 
microvascular alteration, and interstitial inflammation 
(ie, acute tubulointerstitial nephritis).51,52 Since many 
medications are renally metabolised and eliminated, AKI 
is an important contributor to therapeutic interruptions 
and delay in diagnostic tests and interventions. 
Karimzadeh and colleagues53 differentiate between drugs 
that cause: kidney dysfunction without damage (eg, 
RAAS inhibitors), damage without dysfunction (eg, 
vancomycin), both dysfunction and damage (eg, non-
steroidal anti-inflammatory drugs), and neither 
dysfunction nor damage (eg, trimethoprim). Drugs that 
are not nephrotoxic but are renally cleared might 
accumulate in AKI and also cause harm (eg, β blockers, 
sedatives).

AKI in heart failure
Cardiorenal syndrome describes pathophysiological 
disorders of the heart and kidneys in which acute or 
chronic dysfunction in one organ induces acute or 
chronic dysfunction in the other.54 Mechanisms include 
reduced effective circulating volume, renal venous 
congestion, activation of the sympathetic nervous system 
and RAAS, inflammation, and an imbalance in reactive 
oxygen species and nitric oxide production. AKI 
prevention and management focus on optimal manage-
ment of heart failure and coronary artery disease.55 
During decongestion therapy, serum creatinine often 
rises. Studies have confirmed that ongoing diuretic 
therapy in volume-overloaded patients is associated with 
reduced mortality and a lower risk of rehospitalisation 
without causing kidney damage.56,57 Withdrawing or 

Figure 3: AKI pathophysiology
Key pathophysiological mechanisms contributing to acute kidney injury. AKI=acute kidney injury.
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reducing diuretics during the decongestion therapy 
might be counter productive.

AKI in liver disease
Among hospitalised patients with cirrhosis, up to 50% 
develop AKI. The risk of AKI increases to 80% in patients 
with cirrhosis admitted to the ICU.25 Susceptibility to 
AKI varies across individuals depending on non-
modifiable factors (eg, comorbidities), modifiable factors 
(eg, sepsis, nephrotoxic drugs), and factors related to 
liver disease (eg, ascites, decompensating events).

Hepatorenal syndrome describes a specific phenotype 
of renal dysfunction observed in patients with cirrhosis 
with clinically significant ascites. AKI in this context is the 
result of reduced renal perfusion through hemodynamic 
alterations in the arterial circulation, coupled with portal 
hypertension and splanchnic vasodilation, overactivity of 
the endogenous vasoactive system, and systemic 
inflammation. In 2023, representatives of ADQI and the 
International Club of Ascites proposed a change to the 
diagnostic criteria for hepa torenal syndrome-associated 
AKI. The experts recommended that hepatorenal 
syndrome-associated AKI be considered in patients with 
cirrhosis, ascites, and AKI, where intravascular volume 
status was deemed adequate and where there was no 
alternative explanation for AKI.25 Routine administration 
of intravenous albumin for 48 h is no longer a requisite 
for the diagnosis of hepatorenal syndrome-associated 
AKI. The time window for evaluating the response to 
volume resuscitation (when indicated) should be within 
24 h, to avoid fluid overload and ensure timely initiation of 
vasoconstrictor therapy. Terlipressin is considered the 
first-line agent in combination with 20–25% albumin. 
However, meta-analyses have shown comparative effects 
between norepinephrine and terlipressin for reversal of 
hepatorenal syndrome-associated AKI.58 Close monitoring 
of volume status during treatment with terlipressin is 
recommended, including adjustment or discontinuation 
of therapy in case of volume overload or no response.

Pregnancy-associated AKI
Pregnancy-associated AKI is associated with maternal 
and neonatal morbidity and mortality.59 Common causes 
are pre-eclampsia, sepsis, and haemorrhage. The 
presence of the fetal–placenta unit results in 
pathophysiological changes including haemodynamic, 
neurohumoral, immunological, vascular, and structural 
alterations.60 Mechanical pressure from the gravid uterus 
and pregnancy-associated hormonal changes can lead to 
physiological dilatation of the urinary collecting system 
with reduced peristalsis, which increases the risk of 
urinary tract infections. Pre-eclampsia, eclampsia, and 
the syndrome of haemolysis, elevated liver enzymes, and 
low platelet count are pregnancy-specific syndromes 
resulting from placental dysfunction that can cause AKI. 
Individuals with known glomerulonephritis might 
experience flares during pregnancy.

An increase in renal plasma flow by 80% and in GFR by 
50% leads to a natural decrease in serum creatinine by 
gestational age, which poses a challenge for pregnancy-
associated AKI diagnosis (panel).61 When feasible, serum 
creatinine, urinalysis, urine dipstick, or quantitative 
albuminuria obtained with uACR should be determined at 
the first encounter and repeated in patients with ongoing 
insult. In patients with serum creatinine higher than the 
reference concentrations or with an increase in serum 
creatinine above baseline, serial creatinine monitoring 
helps determining whether these individuals have AKI, 
AKD, or CKD. The role of new biomarkers in diagnosing 
and prognosticating pregnancy-associated AKI is unclear.62

Treatment of pregnancy-associated AKI is tailored by 
its specific cause. Fluid resuscitation is key to maintain 
renal and uteroplacental perfusion in case of 
hypovolaemia but should be done with caution in women 
with pre-eclampsia or cardiomyopathy owing to the risk 
of pulmonary oedema. In cases of pre-eclampsia, 
placental abruption, haemolysis, elevated liver enzymes 
low platelets syndrome, and acute fatty liver of pregnancy, 
delivery of the foetus should be considered to reverse 
maternal organ dysfunction.63 Delivery might also be 
needed to remove the source of sepsis (eg, chorio-
amnionitis). Specific AKI aetiologies, (eg, lupus 
nephri tis, thrombotic thrombocytopenic purpura) might 
need treatment with immunosuppression or plasma 
exchange. There are fetal and maternal indications for 
RRT. The maternal indications do not differ from those 
of non-pregnant individuals.64

Risk assessment and prevention of AKI
AKI risk profiling is essential to inform tailored 
monitoring and preventive measures. Risk factors for 
AKI can be categorised into: comorbidities, exposures, 
processes of care, environmental, socioeconomic, and 
cultural factors. The effect of each factor on AKI risk 
varies by patient characteristics, health-care system, and 
resource availabilities. Modifiable (eg, dehydration, fluid 
overload, nephrotoxic drugs, and major surgery) and 
non-modifiable (eg, age, sex, ethnicity) factors affect AKI 
susceptibility and prognosis. Male sex is associated with 
an increased risk of AKI in preclinical models, but the 
evidence for sex differences in clinical risk and outcomes 
of AKI is mixed.65

Numerous aetiology-specific and procedure-specific 
risk prediction models and scores exist, in particular for 
patients undergoing cardiac surgery and percutaneous 
coronary intervention.66–68 The renal angina index uses 
individual risk profiles and creatinine changes to 
predict severe AKI development in both children and 
adults.69 Various biomarkers predict AKI occurrence, 
progression, RRT receipt, and clinical outcomes.31 
Measurement of renal functional reserve provides an 
assessment of the difference between resting GFR and 
stress GFR, which predicts the risk of AKI post-cardiac 
surgery.70
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Clinical decision support systems analyse data from 
electronic health records in real-time to identify 
modifiable risk factors, predict or detect AKI early, and 
guide tailored interventions and follow-up.71 AKI 
electronic alerts have been associated with increased 
documentation, nephrology referral, and discontinuation 
of medications but the benefits on patient-centred 
outcomes are inconsistent.72–75

Digital health tools, including telemedicine and 
wearable sensors and devices, offer opportunities for 
enhanced AKI care at individual, health-care system, and 
population levels.76,77 A feasibility study in resource-limited 
areas showed that telemedicine, combined with 
educational programmes and a point-of-care kidney 
function test, could identify AKI early and inform 
management.78 A clinical decision support system that 
combined renal angina index with a conditional urine 
NGAL measurement to guide RRT initiation in children 
was associated with shorter hospital stay, increased 
survival, and health-care cost savings.23,79

The general principles of AKI prevention are treatment 
of the precipitating factors and avoidance of further 
nephrotoxic insult.4 Biomarker-guided implementation of 
an AKI care bundle has been shown to reduce the 
development of moderate-to-severe AKI after major 
cardiac and non-cardiac surgery.80–83 A stepped-wedge, 
cluster RCT that used a clinical decision support system 
on contrast volume and hemodynamic-guided intra venous 
fluid targets, combined with an education programme, 
audit, and feedback showed a 2·3% absolute risk reduction 
in the incidence of contrast-associated AKI.77

Non-dialytic management of AKI
With a few exceptions (eg, immunosuppression for 
glomerulonephritis or acute tubulointerstitial nephritis, 
terlipressin for hepatorenal syndrome), management of 
AKI is primarily supportive, including treatment of the 
underlying cause, prevention of further injury, and 
management of complications of AKI (figure 4).

Drug management
Drugs that are directly toxic to the kidney should 
be avoided, withheld, or ceased when possible. 
Drug stewardship programmes help to rationalise 
nephrotoxic drug use, and therapeutic drug monitoring 
informs drug dosing and monitoring.84 It is increasingly 
recognised that RAAS inhibitors can often be 
safely continued in the absence of hypotension or 
hyperkalaemia, especially in the context of cardiorenal 
syndrome.85 Renally cleared drugs might accumulate, 
leading to systemic toxicity.

Fluid management
Both hypovolaemia and hypervolaemia are important 
determinants of kidney perfusion and influence AKI 
progression and recovery. In AKI, the goal of fluid 
administration is to achieve euvolemia and to improve 

cardiac output and kidney perfusion without causing or 
worsening fluid overload. The volume of fluid 
needed varies depending on the type of illness and 
comorbidities.

Overall, buffered crystalloids might confer a mortality 
benefit compared with 0·9% saline, except for patients 
with traumatic brain injury.86 Albumin does not reduce 
the risk of severe AKI in sepsis but is recommended for 
patients undergoing large volume paracentesis and 
patients with spontaneous bacterial peritonitis or 
hepatorenal syndrome treated with terlipressin.87 
Synthetic colloids increase the risk of RRT and should be 
avoided.88 Loop diuretics can be used to treat 
hypervolaemia but have no other role in the treatment of 
AKI.89

Haemodynamic management
Prompt reversal of hypotension to a pressure higher 
than the threshold for renal autoregulation might 
prevent AKI progression and enhance recovery.90 An 
initial mean arterial pressure target of 65 mmHg can 
be set for most patients. A beneficial effect of higher 
mean arterial pressure targets on renal function in 
patients who had been hypertensive can be observed 
but the results are not consistent.91–93 The mean arterial 

Figure 4: Summary of the current evidence regarding the assessment and management of the AKI continuum 
from high-risk state to AKI, AKD, and CKD
Grey text refers to investigations or therapies under investigation. AKD=acute kidney disease. AKI=acute kidney 
injury. CDSS=clinical decision support system. CKD=chronic kidney disease. FST=furosemide stress test. 
HrQOL=health-related quality of life. RRT=renal replacement therapy. SCr=serum creatinine.
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pressure target should be individualised, based on pre-
existing blood pressure results and markers of organ 
perfusion.93

In general, fluids are used to correct hypovolaemia, 
vasopressors are required in case of vasoplegia, and 
inotropes are indicated to improve cardiac output. 
Norepinephrine is recommended as the first-line 
vasopressor in AKI.4 However, given the differences in 
receptor distributions within the kidneys, other 
vasoconstrictors might be of use in some AKI sub-
phenotypes.94 A post-hoc analysis of the ATHOS 3 trial95 
showed that patients receiving RRT had improved 
survival and earlier liberation from RRT if randomly 
assigned to angiotensin II.

Supportive measures
The role of cation exchange resins to prevent 
hyperkalaemia in patients with AKI has not been 
confirmed. Metabolic acidosis occurs commonly in AKI 
but rarely requires treatment, unless severe. Anaemia 
should be corrected to a target haemoglobin of more 
than 75 g/L, but there is no evidence that a higher 
haemoglobin target is beneficial.96,97 AKI can induce 
platelet dysfunction, leading to an increased risk of 
clinically significant bleeding.

Nutritional support is an important component of 
managing patients with AKI. In the absence of high-level 
evidence to inform nutritional therapy, calorie and 
protein intake for AKI patients should be prescribed as 
for other hospitalised patients, but high protein 
delivery might increase mortality in critically ill AKI 
patients.98,99 Restrictions on potassium, phosphate, and 
sodium intake apply to most patients with AKI and 
hyperglycaemia should be avoided. Micronutrient 

supplementation is recommended for patients receiving 
RRT.99

Renal replacement therapy
RRT constitutes a process of care requiring regular 
evaluation, monitoring, and reassessment (figure 5).

Timing
Urgent indications for RRT include medically refractory 
hyperkalaemia, metabolic acidosis, fluid overload with 
pulmonary oedema, and uremic complications. In 
clinical practice, they are rare. Relative indications are 
more common but defined with less precision. In the 
absence of urgent indications, RCTs from 2016 to 2020 
support a watchful waiting approach (figure 5).100–103 The 
ELAIN trial showed improved survival when RRT was 
started at AKI stage 2 compared with AKI stage 3 in a 
cohort of predominantly surgical patients at a single 
centre.103 Three subsequent multicentre RCTs (AKIKI, 
IDEAL-ICU, and STARRT-AKI) showed no benefit with 
early initiation, although different criteria for early and 
late RRT were applied.100–102 In these trials, deferred 
initiation reduced the utilisation of RRT by about 40% 
on average. Further, the STARRT-AKI trial showed a 
higher rate of RRT dependence at 90 days in patients 
randomly assigned to accelerated RRT initiation 
group.102 The AKIKI-2 trial showed that RRT deferral for 
patients with AKI stage 3, oliguria for more than 72 h, 
and blood urea nitrogen of more than 140 mg/dL, 
however, was associated with increased 60-day mortality 
and no difference in RRT-free days.104 The balance of 
evidence from these RCTs indicates that initiation of 
RRT without an AKI-related urgent indication does not 
improve clinical outcomes.105

Figure 5: Processes of RRT care
AKI=acute kidney injury. RRT=renal replacement therapy.
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Modality
The spectrum of RRT therapies includes continuous 
RRT, conventional intermittent haemodialysis, and 
prolonged intermittent RRT which includes slow 
extended dialysis, and acute peritoneal dialysis.106 Despite 
some apparent differences related to haemodynamic 
tolerance, RCTs have not shown a significant survival 
difference between modalities.107 The final choice is often 
informed by patient factors, clinician expertise, and 
resource availability. Continuous RRT, and where 
applicable peritoneal dialysis, might be preferential to 
conventional intermittent haemodialysis for patients with 
acute brain injury or increased intracranial pressure. A 
secondary analysis of the STARRT-AKI trial108 concluded 
that continuous RRT as the initial modality was associated 
with a lower risk of death or dialysis dependency at 
90 days. Intermittent modalities offer the opportunity to 
allow active mobilisation and improved sleep quality. 
Thus, there is often a transition from continuous RRT to 
intermittent therapies when patients are physiologically 
and metabolically able to tolerate fluctuations in fluid 
status and the risks of cerebral oedema have resolved.109 
Acute peritoneal dialysis is predominantly applied in 
resource-limited settings and in children.110

Dose
Intensity of RRT was investigated in the ATN and the 
RENAL trials,111,112 leading to current recommendations to 
prescribe a dose of 25–30 mL/kg per h for continuous 
RRT and a weekly urea removal times treatment duration 
divided by the volume of distribution for urea of 3·9 for 
intermittent haemodialysis. The recommended dose for 
prolonged intermittent RRT is less clearly established. 
Uremic milieu might promote kidney repair after injury, 
implying that lower doses of RRT might be beneficial.113 
Clinical trials investigating lower doses are ongoing.

Ultrafiltration
There is a balance between reversing fluid overload 
rapidly and the risk of intradialytic hypotension if fluid is 
removed too fast. Based on secondary analyses of the 
ATN and RENAL trials, moderate fluid removal at 
1·01–1·75 mL/kg per h appears to be safe.111,112,114

Anticoagulation
Worldwide, unfractionated or low molecular weight 
heparin are the most used anticoagulants and are 
recommended for patients receiving intermittent 
haemodialysis or prolonged intermittent RRT.4 For 
continuous RRT, regional citrate anticoagulation is 
increasingly used after data showing better filter patency 
and less bleeding complications.115,116

Discontinuation
Creatinine and other uremic toxins are removed during 
RRT and are not reliable indicators of renal recovery. 
Based on large cohort studies, a spontaneous urinary 

output of more than 500 mL/day, or 2·4 L/day with the 
use of diuretics, are widely accepted criteria for considering 
discontinuation, provided there are no ongoing or new 
indications for RRT.117 The role of renal biomarkers to 
guide decision making is under investigation. Diuretic 
use does not hasten liberation from RRT.118

Supportive strategies
Drug dosing is particularly challenging during RRT, 
especially during periods of transition of therapy, 
recovery of kidney function, and if additional types of 
extracorporeal therapies are needed. Both underdosing 
and overdosing of medications, including of antimicrobial 
drugs, have been reported.119 Novel dosing strategies, 
including therapeutic drug monitoring and advanced 
pharmacokinetic modelling are being explored to 
optimise drug dosing during RRT.

AKI subphenotyping
Molecular approaches in preclinical research, including 
analysis of gene and protein expression, localisation of 
gene transcripts, and measurement of biomarkers, have 
highlighted important heterogeneity in AKI, which is not 
captured by the current AKI definition. Even within the 
spectrum of acute tubular injury (ATI), there is less than 
10% overlap in genetic expression between ATI from 
different injuries (eg, hypotension, renal artery ligation, 
and sepsis).33

Recognition is growing for the fact that AKI sub-
phenotyping with the use of new and conventional 
biomarkers, along with selected clinical features, is 
required to identify reproducible subpopulations that 
might respond differently to treatment, enabling 
personalised and precision-oriented management.120–122 
For instance, among patients with acute tubulointerstitial 
nephritis, individuals with high urinary interleukin-9 
concentrations benefitted from corticosteroid therapy.27 
Separately, in a series of post-hoc analyses of patients 
with sepsis and acute respiratory distress syndrome, a 
distinct AKI subphenotype based on biomarkers of 
endothelial dysfunction and soluble tumour necrosis 
factor receptor 1 was identified that benefited from 
treatment with vasopressin and norepinephrine 
(compared with norepinephrine alone) in septic shock.123 
A strategy of using existing data, including data stored 
within electronic health records, supplemented by new 
biomarkers, offers promise for personalised AKI care.

Organ crosstalk
The term organ crosstalk describes the negative 
interference of a failing organ in other organs. There are 
several reasons for why AKI can lead to dysfunction of 
other organs.124,125 First, AKI and multi-organ failure 
might represent the effect of a common underlying 
disease (sepsis or cardiogenic shock). Second, after the 
initial trigger of AKI, intrarenal inflammation might lead 
to the release of inflammatory mediators and activated 
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immune cells into the systemic circulation, causing 
distant organ dysfunction. Finally, organ dysfunction 
might occur because of uraemia, fluid overload, acid–
base disbalance, or potential complications of 
interventions, such as RRT.

Crosstalk exists between the kidneys and the heart, 
lung, liver, gut, and the brain, but also the immune 
system, with evidence of AKI-induced immuno-
suppression resulting in a higher susceptibility to 
secondary infections. These interactions likely contribute 
to the increased morbidity and mortality that is associated 
with AKI.

Outcomes after AKI
The outcomes of AKI and AKD vary substantially based 
on patient factors, duration of AKI and AKD, and health-
care infrastructure.126 Mortality rates with AKI have been 
reported to be 24% in adults and 14% in children, and 
are inversely related to the income of countries and 
percentage of gross domestic product applied to health 
expenditure.9 Mortality rates are higher in critically ill 
patients and individuals treated with RRT.1

Patients recovered from AKI often face long-term 
complications, including CKD, dialysis depen dence, and 
increased cardiovascular risk (figure 6).127,128 In 

high-resource countries, the economic burden of AKI is 
substantial, with long hospital stays and the need for 
ICU admission. Ethnicity, income, education, access to 
health care, sociocultural factors, and social deprivation 
have been reported to contribute to poor outcomes.129,130

Renal recovery
Although there is no consensus on the criteria for renal 
recovery, it is often defined as complete or partial. 
Complete recovery is defined by return of serum 
creatinine to baseline concentration and partial recovery 
means that AKI has resolved but serum creatinine 
concentration has not returned to baseline.131,132 AKI 
reversal can be categorised as rapid (resolving within 
48 h) or delayed (when the condition persists beyond 
48 h). In a retrospective cohort study11 of 16 968 critically 
ill patients with stage 2 or 3 AKI, 41% of patients had not 
fully recovered kidney function at the time of hospital 
discharge. Of these patients, 26% had no AKI reversal at 
any point, and 15% had reversal but relapsed without 
subsequent recovery.

The presence or absence of renal recovery and its 
timing have prognostic implications. Compared with 
recovery within 10 days, later recovery is associated with 
an increased risk of a sustained decline in eGFR or kidney 
failure.133 A prospective cohort study showed that those 
with non-resolving AKI, compared with resolving AKI, 
had a 51% higher risk of major adverse kidney events.134 
Creatinine-based eGFR might overestimate renal recovery 
due to factors related to hospitalisation and critical illness, 
such as loss of muscle mass.

AKI also carries a risk for future recurrent AKI. In 
one study,135 a quarter of hospitalised patients with AKI 
experienced recurrent AKI requiring hospitalisation 
within 12 months of discharge, with a median time to 
recurrent AKI of 64 days. Recurrent AKI is associated 
with an increased risk of death.136

The risk of CKD and kidney failure increases with 
greater KDIGO AKI stage in a graded way.137,138 Much of 
the risk of long-term decline in kidney function in 
patients with AKI stage 1 and 2 might be accounted for 
by pre-existing kidney problems and proteinuria.139 For 
37% patients hospitalised with AKI, a major adverse 
kidney event occurred within the first year,140 whereas in 
critically ill patients with AKI, 94% experienced a major 
adverse kidney events by 3 years.141

The risk of proteinuria, a marker and risk factor for 
CKD progression, is increased after AKI and there 
appears to be a positive correlation with frequency and 
severity of AKI.142 In the ASSESS-AKI study,143 for each 
doubling of uACR, the hazard ratio for kidney disease 
progression was 1·53 (95% CI 1·45–1·62).

Mortality
AKI individuals recovered from AKI experience an 
increased risk of short-term and long-term mortality. 
This increase is particularly large for individuals who 

Figure 6:  Short-term and long-term complications after AKI
AKI=acute kidney injury. CKD=chronic kidney disease.
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survived a stay in the ICU.140 The most common causes of 
death after AKI are cardiovascular disease and cancer.144

Quality of life
Several studies have reported lower health-related quality 
of life in individuals recovered from critical illness and 
severe AKI.145 Frailty is also common in individuals 
recovered from AKI, especially in those with more severe 
AKI. In children who survived an episode of AKI, 
memory deficits and learning impairments have been 
reported.145

Major limitations of interpreting health-related quality 
of life results across studies are the confounding effect of 
frailty and heterogeneity in the timing of assessment, 
assessment tools, patient population, and duration of 
follow-up. Most individuals who recovered from AKI who 
had received RRT viewed their health-related quality of life 
as acceptable and expressed a wish to receive similar 
treatments again.146

Non-renal comorbidities
The risk of major adverse cardiac events, heart failure, 
coronary events, and hypertension is increased in AKI 
individuals who recovered.147–149 Analysis of a national 
database in Taiwan revealed a higher incidence of stroke 
and increased severity of stroke events in individuals 
recovered from dialysis-requiring AKI compared with 
matched controls without AKI.149 AKI requiring dialysis 
has also been associated with the development of 

dementia.150 Furthermore, associations between AKI and 
an increased long-term risk of severe sepsis, 
upper gastrointestinal haemorrhage, fractures, and 
malignancy have been reported.151–154

AKI aftercare
Patient transition from hospital to home after AKI 
requires continuity of care in the community (figure 4). 
The 2012 KDIGO guidelines suggest that patients should 
be evaluated 3 months after AKI for resolution, new 
onset, or worsening of pre-existing CKD.155 However, 
effective models of care to improve hospital-to-home 
transitions and long-term outcomes remain unclear. 
Studies have reported better processes of care and 
outcomes associated with nephrology specialist 
follow-up and structured post-AKI clinics, but follow-up 
with specialists remains challenging to coordinate.156–158 
Patients have described prioritisation of other health 
conditions over their kidney disease, low awareness of 
AKI as a potential long-term health issue, and anxiety 
from competing health demands as challenges.159 
Further, health-care providers often perceive AKI as a 
complex condition to manage, at times requiring clinical 
decisions that conflict with the treatment of other 
comorbidities.160

Research in the last 8 years suggests that biomarker 
panels and risk prediction models to risk stratify patients 
for progression to advanced CKD after AKI could improve 
the appropriateness and efficiency of follow-up by targeting 

Objective Population Main outcomes and endpoints Positive effects for practice 

BipAK-2168

(NCT04647396)
RCT to explore whether timely 
application of an AKI care bundle 
in patients who are kidney 
biomarker positive after major 
surgery prevents AKI

Patients undergoing major 
surgery and at high risk for 
postoperative AKI.

Primary endpoint of incidence of AKI stage 2 or 3 within 
72 h after surgery. Secondary endpoints include any AKI, 
need for RRT, duration of RRT, renal recovery, mortality, 
LOS, and MAKE

Strategy to prevent AKI after major 
surgery and its consequences

PREVENTS-AKI
(NCT05468203)

RCT to test the effect of 
dapagliflozin versus placebo upon 
critically ill patients’ risk of 
developing severe AKI 

Adult ICU patients at high 
risk of AKI.

Primary outcome of doubling of serum creatinine, 
initiation of RRT, or death
Secondary outcomes include mortality, use of 
vasopressors, and mechanical ventilation

Possible strategy to prevent or mitigate 
AKI during critical illness

Artemis 
(NCT05746559)

RCT to investigate the role of 
ravulizumab to protect patients 
with CKD from AKI after cardiac 
surgery-associated AKI

Adult patients with CKD 
undergoing cardiac surgery

Primary outcome of MAKE 90. Secondary outcomes 
include mortality, need for RRT and AKI free days

Possible therapy to prevent deterioration 
of kidney function in CKD patients 
undergoing cardiac surgery

CLEAR-AKI 
(NCT05996835) 

RCT to investigate the role of TIN-
816 (an ATP modulator) in 
sepsis-associated AKI

Critically ill adult patients 
with sepsis-associated AKI

Primary outcome of endogenous creatinine clearance 
from day 1 to day 8. Secondary outcomes include MAKE, 
use of RRT, survival, and change of SOFA score

Possible therapy to facilitate renal 
recovery in critically ill patients with 
sepsis-associated AKI

Development and 
external validation of a 
machine learning model 
for prediction of 
persistent AKI stage 3169

Machine learning analysis to 
develop and validate a real-time 
model able to accurately predict 
persistent AKI in the ICU

Adult patients in ICU with 
AKI stage 2 or 3

Primary endpoint of ability to predict AKI stage 3 lasting 
for at least 72 h when in the ICU

Prediction of persistent AKI has potential 
to initiate strategies that improve AKI 
outcomes

COPE-AKI164

(NCT05805709)
RCT comparing a multimodal 
process-of-care intervention to 
usual care after moderate to 
severe AKI

Adult patients with AKI 
stage 2 or 3 and evidence 
of persistent AKI

Primary outcome of hospital-free days through day 90. 
Secondary outcomes include MAKE at 90, 180, and 
365 days, recurrent AKI, and quality of life

Information to guide follow-up care of 
AKI, including education and medication 
reconciliation

AKI=acute kidney injury. CKD=chronic kidney disease. ICU=intensive care unit. LOS=length of stay. MAKE=major adverse kidney event. RCT=randomised controlled trial. RRT=renal replacement therapy. 
SOFA=Sequential Organ Failure Assessment.

Table 2: AKI research in progress (selected studies)
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enhanced follow-up care strategies to patients most likely 
to benefit.161–163 Patient education, improved communication 
strategies about AKI to community-based health-care 
providers, and clear guidance on intensity of clinical 
follow-up and therapeutic interventions that reduce the 
risk of CKD progression and cardiovascular events might 
improve long-term outcomes, but high-quality evidence is 
insufficient. Novel models of post-discharge care after AKI 
that incorporate multidisciplinary health practitioners and 
leverage digital health technologies are being evaluated.164

Future prospects
Advances in identifying AKI subphenotypes, methods to 
leverage artificial intelligence and electronic health 
records, an improved understanding of the molecular 
pathways in human kidney disease, advanced statistical 
methodologies and clinical trial design, as well as 
development of new drugs show great promise in moving 
closer towards personalised AKI care.123,165–169 Ongoing and 
future studies will further advance evidence on 
personalised treatment approaches (table 2). There is also 
increasing awareness that biological sex and gender affect 
susceptibility to AKI, leading to disparities in health care, 
especially in low-resource countries.65 International 
collaboration, advocacy, and patient engagement are 
essential to overcome some of these challenges.
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