Рабочая тетрадь

к практическим занятиям по курсу «Основы функциональной диагностики»

УЧЕБНОЕ ПОСОБИЕ

для студентов дневного лечебного и педиатрического факультетов

Составитель: к.б.н., доцент А.Ю. Шишелова

© ФГБОУ ВО РНИМУ имени Н.И. Пирогова Минздрава России, 2018 г

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1

ТЕМА ЗАНЯТИЯ: Основы функциональной диагностики обмена веществ и энергии

ЛИТЕРАТУРА:

1. Руководство к практическим занятиям по нормальной физиологии: Учебное пособие / Н. Н. Алипов, Д. А. Ахтямова, В. Г. Афанасьев и др.; под ред. С. М. Будылиной, В. М. Смирнова. 2005 г. (далее – «Руководство...»)

РАБОТА № 1. Определение должного основного обмена с использованием таблии.

ХОД РАБОТЫ: Используют стандартные таблицы для расчета среднестатистической величины основного обмена, учитывающие пол и значения веса, роста, возраста («Руководство...», табл. 4.6-4.9).

РЕЗУЛЬТАТЫ РАБОТЫ

Антропологический	Значение антроп.	Величина
Показатель	Показателя	энергообмена, ккал
Bec		
Рост		
Возраст		

ВЫВОД: (указать, на что расходуется энергия основного обмена).

РАБОТА № 2. Определение должного основного обмена по формуле.

Для людей в возрасте 18-30 лет:

- у мужчин OO = 15,4 * MT 27*P + 717 (ккал/сут)
- у женщин OO = 13.3 * MT + 334*P + 35 (ккал/сут)

МТ – масса тела, кг

P - poct, M

РЕЗУЛЬТАТЫ РАБОТЫ

Расчетное значение основного обмена = кдж/сутки = кДж/сутки

ВЫВОД: (отметить, почему формула расчета должного основного обмена должна учитывать величину веса и роста).

РАБОТА № 3. Определение величины отклонения основного обмена (ОО) от должного («Руководство...», раб. 4.20).

ХОД РАБОТЫ: измерения проводят в состоянии физического и эмоционального покоя (в положении лежа на спине), 3 раза, с интервалом 1-2 мин. Для расчетов используют минимальные значения показателей.

Формула Рида:

Отклонение OO (%) = 0.75 x (частота пульса + пульсовое давление x 0.74) – 72

РЕЗУЛЬТАТЫ РАБОТЫ

Величины показателей деятельности сердечно-сосудистой системы:

Найденное отклонение ОО -

(допустимым счи □тается отклонение не более 10% от средне-статистической нормы)

ВЫВОД: (1) отметить, соответствуют ли норме полученные данные; 2) привести примеры физиологических причин, вызывающих увеличение ОО больше нормы).

РАБОТА № 4. Расчет индекса массы тела (ИМТ).

ИМТ используют для оценки степени выраженности жировой ткани. При повышенном анаболизме (детский возраст, беременность, спортсмены-атлеты) ИМТ не характеризует истинное состояние жирового обмена.

$$ИМT = \text{вес (кг)/ poct}^2 (M)$$

РЕЗУЛЬТАТЫ РАБОТЫ

Bec =
$$K\Gamma$$
, Poct = M

Таблица. Характеристика массы тела взрослого человека по ИМТ

ИМТ	Характеристика массы тела		
< 18,5	Недостаточный вес		
18,5 - 24,9	Норма		
≥ 25,0	Избыточный вес:		
• 25,0 – 29,9	• предожирение		
• ≥ 30,0	• ожирение:		
30,0-34,9	I степени		
35,0 - 39,9	II степени		
≥ 40,0	III степени		

ВЫВОД: (охарактеризовать свою массу тела по ИМТ).

РАБОТА № 5. Составление пищевого рациона.

Детально принципы составления пищевого рациона изложены в «Руководство...», раб. 4.17. Для работников умственного труда 18-29 лет общий обмен составляет в среднем 2000 (женщины) – 2450 (мужчины) ккал/сутки. Для подбора продуктов питания воспользуйтесь таблицей 4.4 («Руководство...»).

ХОД РАБОТЫ: составьте пищевой рацион, оптимальный для вас с учетом пола, возраста и категории труда.

РЕЗУЛЬТАТЫ РАБОТЫ

Таблица. Суточный пищевой рацион студента при трехразовом питании.

таолица. Сут	очный пищсвой	рицпо	петудент	u npn ip	спризово	m mmamm.
Прием пищи (калорийность , % от суточной)	Наименование	Вес, г	Белков, г	Жиров, г	Углевод ов, г	Энергетическа я ценность продукта, ккал
Завтрак (30%)						
Subspuik (5070)						
Обед (45%)						
Ужин (25%)						
, ,						
Итого за сутки	-	-				

ВЫВОД: (оцените соотношение веса белков, жиров и углеводов, рекомендованных человеку для потребления за сутки, соответствие энергетической ценности подобранного пищевого рациона общему обмену, пластическую ценности рекомендованных продуктов по происхождению белков и жиров).

Подпись преподавателя -

Дата –

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 2

ТЕМА ЗАНЯТИЯ: Основы функциональной диагностики пищеварительной системы

РАБОТА № 1. Методы изучения секреторной функции желудка.

РЕЗУЛЬТАТЫ РАБОТЫ (Нарисовать схемы операций)

А. Гейденгайну	•	•	Б. Павлову	,
На схемах обозначить: кровеносные сосуды.	1. малый	желудочек,	2. блуждающий	й нерв, 3.
2. Эзофагото	омия в соче	гании с фист	гулой Басова	
На схеме обозначить: 1. фистула.	. концы пе	ререзанного	пищевода, 2. ж	келудок, 3.
ВЫВОД: (1) отметить, позволяют изучать рассмог сока из изолированного задержкой).	тренные ме	тоды; 2) обт	ьяснить, почему	выделение

1. Изолированные желудочки по:

РАБОТА № 2. Использование методов манометрии и импедансометрии пищевода для диагностики моторной функции пищевода.

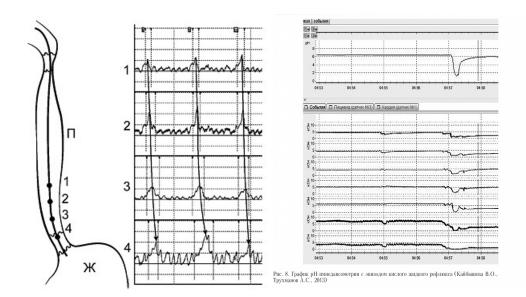


Рис. 1. Манометрия пищевода: справа - схема расположения портов, слева — кривые внутрипищеводного давления при глотании воды. Обозначения: П — пищевод, Ж — желудок, 1—4 — датчики давления в пищеводе и зарегистрированные ими манометрические кривые (сайт http://www.gastroscan.ru/)

Рис. 2. pH - импедансометрия пищевода пациента с эпизодом рефлюкса

ВЫВОД: (какие показатели моторики пищевода можно оценить методами манометрии и импедансометрии, в сравнении. 2) охарактеризуйте проявления рефлюкса - направление движения, консистенцию и рН болюса).

РАБОТА № 3. Электрогастрография.

Электрогастрография – запись электрических сигналов от мышц желудка с поверхности тела человека. При расшифровке электрогастрограмм (ЭГГ) обращают внимание на общий характер кривой, амплитуду, частоту и ритм зубцов. У здоровых людей амплитуда составляет 0,1—0,4 мВ, ритм — 3 колебания в минуту.

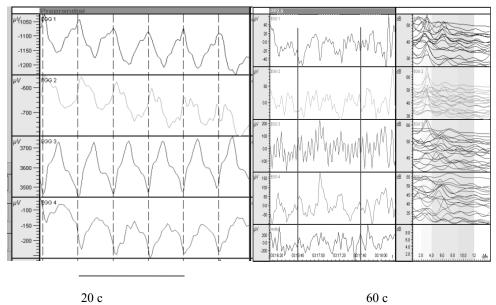


Рис. 1. ЭГГ, зарегистрированная Рис. 2. ЭГГ, зарегистрированная в межпищеварительный период через час после приема пищи

в межпищеварительный период через час после приема пищи *The American Journal of Gastroenterology* **99**, 478-485, 2004 doi:10.1111/j.1572-0241.2004.04103

ВЫВОД: (1) сравнить данные приведенных ЭГГ с нормой, 2) указать роль мигрирующего миоэлектрического комплекса ММС для формирования моторики в межпищеварительный период, 3) перечислить основные вещества, стимулирующие моторику желудка после приема пищи).

РАБОТА № 4. Использование метода интрагастральной рН-метрии.

1. Нарисуйте схему транспортных мембранных механизмов секреции HCl париетальной клеткой

2. Суточная динамика рН желудка

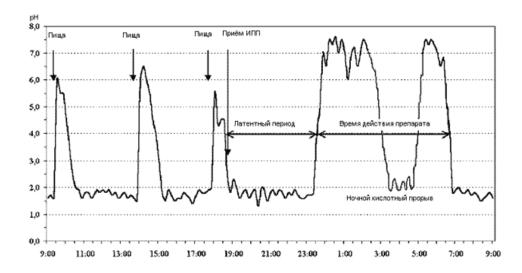
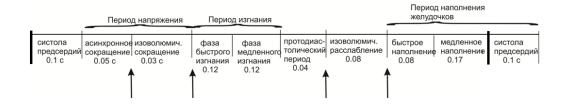


Рис. 1. Схематичная суточная рН-грамма желудка (сайт http://www.gastroscan.ru/)
ВЫВОД: (оцените уровень интрагастральной кислотности у пациента, объясните изменение кислотности после приема пищи и ИПП).

Подпись преподавателя -

Дата –


ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3

ТЕМА ЗАНЯТИЯ: Методы оценки гемодинамической функции сердца

РАБОТА № 1. Анализ сердечного цикла.

Сердечный цикл — это последовательность процессов сокращения и расслабления сердца от начала систолы предсердий до начала следующей систолы предсердий.

А. На рис. 1 обозначьте границы систолы и диастолы предсердий и желудочков. Под стрелками напишите изменение положения клапанов сердца, характерные для данных периодов.

Б. На рис.2 над стрелками напишите название фаз сердечного цикла. Нарисуйте линию, отражающую индекс сократимости (max dP/dt во время систолы).

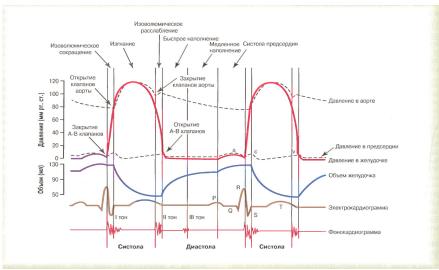
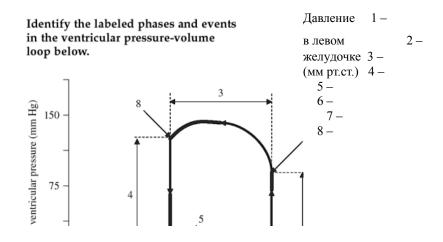



Рис. 2. Изменение давления и объема крови в полостях левой половины сердца во время одного сердечного цикла (в сопоставлении с ЭКГ и ФКГ).

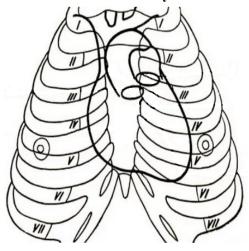
Вывод: (В какие фазы сердечного цикла и по какой причине закрываются: 1) атрио-вентрикулярные клапаны; 2. полулунные клапаны?)

В. На рис. 3 идентифицируйте отмеченные фазы и процессы.

Объем левого желудочка (мл)

Рис. 3. Кривая давление-объем для левого желудочка.

Вывод: (1) объясните, почему на участках 2 и 4 объем желудочка не изменяется; 2) укажите, в какой зависимости находятся крутизна фазы 1 и податливость желудочка)


РАБОТА № 2. Построение функциональной кривой сердца (аналог кривой Франка-Старлинга).

А. Напишите формулировку закона Франка-Старлинга.

Б. Нарисуйте диаграммы зависимости ударного объема от конечнодиастолического объема для здорового сердца (1) и сердца с дисфункцией левого желудочка, характеризующейся сниженной сократимостью (2). Обозначьте средние значения КДО и УО в покое для здорового сердца.

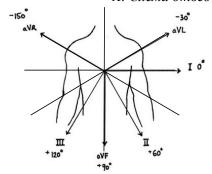
Вывод: (какое физиологическое свойство сердечной мышцы характеризует функциональная кривая сердца?)

РАБОТА № 3. Выслушивание тонов сердца. (Руководство.., работа 5.10)

На схеме обозначить

- проекции клапанов:
- 1. легочного,
- 2. аортального,
- 3. двухстворчатого (митрального),
- 4. трехстворчатого
- (трикуспидального).
- места выслушивания:
- 1а. легочного,
- 2а. аортального,
- 3а. двухстворчатого,
- 4а. трехстворчатого.

Подпись преподавателя -


Дата –

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4

ТЕМА ЗАНЯТИЯ: Электрофизиологические методы оценки сердечной деятельности. Метод электрокардиографии.

РАБОТА № 1. Анализ формирования ЭКГ в системе отведений во фронтальной плоскости.

А. Схема отведений по 6-осевой системе Бейли

Отметьте на схеме стрелками и секторами положения электрической оси сердца:

1- нормальное, 2 — вертикальное, 3 — горизонтальное, 4 — отклонение влево, 5 — отклонение вправо

Б. Зарисуйте образцы $ЭК\Gamma$ в стандартных отведениях I-III при нормальном и вертикальном положениях электрической оси сердца.

	Вертикальное положение ЭОС
дение	
I	
II	
III	
111	

ВЫВОД: (опишите соотношение зубцов RI, RII, RIII при нормальном и вертикальном положениях ЭОС).

РАБОТА № 2. Регистрация и анализ ЭКГ. (Руководство..., работа 5.10)

ХОД РАБОТЫ: зарегистрируйте ЭКГ в одном из стандартных отведений с

помощью переносного электрокардиографа (Руководство, раб. 5.8, скорости движения ленты 25 мм/с, калибровочный сигнал =1 мВ). 1) Определите амплитудно-временные характеристики ЭКГ.
Ритм —
YCC =
Длительность (c): интервалов $PQ = c$, $ST = ,$ зубца $P = ,$
комплекса QRS = .
Амплитуды зубцов (мВ): $P=$, $R=$, $T=$.
2) Напишите нормы компонентов ЭКГ во II стандартном отведении:
Длительность (c): интервала $PQ = $, зубца $P = $, комплекса $QRS = $.
Амплитуды зубцов (средние) (мм/мВ): $P = / , R = / $
T= / .
ВЫВОД: (сравните характеристики ЭКГ с нормой).
Подпись преподавателя - Дата –

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 5

ТЕМА ЗАНЯТИЯ: Методы функциональной диагностики сосудистой системы и гемодинамики.

РАБОТА № 1. Диагностика пульса.

- 1. **Измерьте частоту пульса**: a) за 1 мин = б) за 10 сек медленного вдоха = в) за 10 сек медленного выдоха =
- 2. Оцените наполнение пульса на обеих руках. *Ход работы:* безымянным пальцем полностью передавливают артерию обследуемого до прекращения пульсации. Момент прекращения пульсации улавливают средним пальцем. Затем приподнимают безымянный палец до уровня, когда будут слабо ощутимы пульсаторные толчки, а далее до уровня, где ощущается восстановление исходного пульса. О наполнении судят по разнице между первым и вторым уровнем давления безымянного пальца, что отражает степень колебаний стенки артерии сосуда при прохождении пульсовой волны. Также оцените

равномерность пульса, сравнив следующие друг за другом пульсовые волны. <u>Характеристики пульса по наполнению</u>: удовлетворительный (норма), полный (после нагрузки, при гиперкинетическом типе кровообращения, гипертонии, аортальной недостаточности), пустой (сердечная недостаточность).

Характеристика пульса	На правой руке	На левой руке
Тип пульса по наполнению		
Равномерность		

Сравните на обеих руках:

- время появления пульсовых волн (синхронность) –
- степень наполнения пульса (одинаковость) -
- 3. Оцените ритм пульса. Ритмичный пульс характеризуется сходными по времени интервалами между пульсовыми волнами. Пульс с выраженными неравными промежутками называется аритмичным, нерегулярным.
- 4. Попросите обследуемого сделать 20 приседаний и повторите оценку наполнения пульса. Укажите, есть ли отличия от пробы в покое.

ВЫВОД: (1) сравните полученные данные с нормой, отметьте выраженность дыхательной аритмии, влияние физической нагрузки; 2) опишите механизм возникновения дыхательной аритмии).

РАБОТА № 2. Определение величины артериального давления методом Короткова. (Руководство.., работа 5.23)

Метод Короткова - непрямой способ измерения артериального давления кро□ви, который основан на аускультации сосудистых тонов, возникающих при сдавлении арте□риального сосуда.

Dawrence	700 70HH	****		a meromy vy	******	3 5 5 5 TO TO COME 1
величина	давления	крови і	в плечевои	артерии	испытуемого,	MM DT CT:
	, ,				•	1

- 1. систолического ; 2. диастолического ;
- 3. пульсового ; 4. среднего –

$$A$$
Д = $\frac{\Pi Д}{3} + A$ Дд

Пульсовое АД= АДс – АДд, среднее

ВЫВОД: (1) объясните механизм возникновения сосудистых тонов; 2) сравните полученные данные с нормой).

РАБОТА № 3. Методика определения индекса функциональных изменений (ИФИ).

Тест ИФИ разработан А.Б. Берсеньевой и Ю.П. Зуихиным в 1987 году. С помощью этого теста оценивают функциональные возможности системы кровообращения.

$$И\Phi H = 0,011 \ \text{ЧСС} + 0,014 \ \text{АД сист} + 0,008 \ \text{АД диаст.} + 0,014 \ \text{B} + 0,009 \ \text{MT} - 0,009 \ \text{P} - 0,27.$$

ЧСС - частота сердечных сокращений, АД сист. и АД диаст. - систолическое и диастолическое артериальное давление, В - возраст в годах, МТ - масса тела в кг, р - рост в см.

Результаты: ИФИ =

Оценочные данные теста ИФИ:

- * ИФИ < 2,6 функциональные возможности системы кровообращения
- * ИФИ = 2,6 3,09 удовлетворительные с умеренным напряжением механизмов регуляции.
 - * ИФИ > 3,09 пониженные, недостаточные.

Вывод: (охарактеризуйте функциональные возможности своей системы кровообращения по ИФИ)

РАБОТА № 4. Функциональные пробы на реактивность сердечносистемы (Руководство.., работа 5.34) сосудистой

	Таблица. Результаты проб.					
Проба	ЧСС, уд. в мин.		Знак и величина изменения ЧСС	Норма		
	До воздействия	После воздействия				
Ортостатическая						
Дыхательная						

ВЫВОД: (1. опишите последовательность активации регуляторных влияний, вызывающих изменение ЧСС в каждой пробе, 2.сделайте заключение о реактивности сердечно-сосудистой системы по данным проб).

РАБОТА № 5. Основы метода реоэнцефалографии (РЭГ).

Проведение обследования: проводится в положении сидя, для регистрации РЭГ на виски накладывают к<u>ольцевые электроды,</u> смоченные электропроводящим гелем и закрепляют резиновой лентой. На конечности накладывают электроды для регистрации ЭКГ в I отведении.

А. Зарисуйте нормальную РЭГ, обозначьте основные фазы (реограмма сходна по форме со сфигмограммой).

Вывод: (напишите, какие процессы отражает каждая фаза РЭГ)

Б. Оценка количественных данных РЭГ.

Регистрируемые показатели:

- Vмакс максимальная скорость быстрого наполнения, характеризует тонус крупных артерий. Уменьшение Vмакс отражает повышение тонуса.
- Vcp средняя скорость медленного наполнения. Характеризует тонус <u>средних и мелких артерий</u>.
- ДИК (%) дикротический индекс отношение амплитуды волны на уровне инцизуры к максимальной амплитуде (в процентах). Дает дополнительную информацию о тонусе мелких артерий. Увеличение показателя говорит о росте периферического сопротивления в области мелких артерий.
- ДИА (%) диастолический индекс отношение амплитуды волны на уровне дикротического зубца к максимальной амплитуде волны. Преимущественно отражает состояние оттока крови из артерий в вены. Увеличение показателя говорит о росте периферического сопротивления оттоку из артерий в область мелких вен и снижении оттока.

Таблица. Образец данных для здорового испытуемого, 20 лет

Показатель	Фоновая запись		Норма
		физической	(16-35 лет)
		нагрузки	
Vмакс, Ом/с	0,74	1,31	0,90-2
Vcp, Ом/с	0,46	0,78	0,50-1,3
ДИК, %	53	41	40-70
ДИА, %	64	42	55-85

ВЫВОД: (1. В чем принцип метода РЭГ и о чем он позволяет судить, 2. Охарактеризуйте особенности гемодинамики головного мозга по данным РЭГ).

Подпись преподавателя -

Дата –

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 6

ТЕМА ЗАНЯТИЯ: Основы функциональной диагностики автономной (вегетативной) нервной системы.

РАБОТА № 1. Оценка реактивности человека по экстракардиальным рефлексам автономной нервной системы.

ХОД РАБОТЫ: для исследования рефлекса Ортнера у стоящего человека по пульсу определяют ЧСС за 1 мин. Затем обследуемый запрокидывает голову, и через 15 сек у него снова определяют ЧСС за 1 мин (голова во время измерения запрокинута). Для исследования рефлекса Ашнера у сидящего человека определяют ЧСС за 1 мин. Затем обследуемый закрывает глаза, и ему легко надавливают на боковые поверхности глазных яблок. Через 15 сек после начала надавливания снова определяют ЧСС за 1 мин (продолжая воздействие).

РЕЗУЛЬТАТЫ РАБОТЫ

Проба	Исходная ЧСС (уд/мин.)	ЧСС при проведении пробы (уд/мин.)	Величина изменения ЧСС (уд/мин.)
Рефлекс Ортнера			
Рефлекс Ашнера (глазосердечный рефлекс)			

Оценка результатов (нужное подчеркунть): Рефлекс Ортнера:

- 1. Урежение ЧСС на 4-8 уд./мин. нормотония,
- 2. Урежение ЧСС > чем на 8 уд./мин. ваготония,
- 3. Учащение ЧСС или отсутствие урежения симпатотония.

Рефлекс Ашнера:

- 1. Урежение ЧСС на 4-12 уд./мин. нормотония,
- 2. Урежение ЧСС > чем на 12 уд./мин. ваготония,
- 3. Учащение ЧСС или отсутствие урежения симпатотония.

ВЫВОД: (оцените статус автономной нервной системы у обследуемого).

РАБОТА № 2. Определение типа автономной регуляции сердечно-сосудистой системы по индексу Кердо.

диастолическое артериальное давление АДД = частота сердечных сокращений ЧСС =

$$ИK = (1 - AДД/YCC) * 100% = ______$$

Оценка результатов (подчеркните нужное)

Величина ИК в %	Тонус автономной нервной системы
< -15	Ваготония
-15 - +15	Нормотония
>+15	Симпатотония

ВЫВОД: (оцените статус автономной нервной системы у обследуемого).

РАБОТА № 3. Дермография.

ХОД РАБОТЫ: Провести тупым концом карандаша по коже предплечья с нажатием, избегая болевого ощущения. В ответ на раздражение на коже возникнет белая полоска, которая через некоторое время сменится красной. Измерить латентный период смены белого цвета кожи красным.

Результаты: ЛП =

Оценка латентного периода: в пределах 10-24 сек — у нормотоников; менее 10 сек — при сниженном тонусе симпатических сосудосуживающих нервных центров; более 24 сек — при повышенном тонусе симпатических сосудосуживающих нервных центров.

Работа № 4 Опросник для выявления признаков вегетативных изменений (Вейн А.М.)

При ответах обведите кружком балл, соответствующий ответу и в конце теста вычислите общую сумму баллов.

Таблица 2. Опросник для выявления признаков вегетативных изменений (А.М. Вейн, 1

Вопросы	Да	Нет
<u>.</u>	Ма	1101
 Отмечаете ли Вы (при любом волнении) склонность: 		
а) к покраснению лица;	3	0
б) побледнению лица?	3	0
2. Бывает ли у Вас онемение или похолодание:		
а) пальцев кистей, стоп;	3	0
б) целиком кистей, стоп?	4	0
3. Бывает ли у Вас изменение окраски (побледнение, покраснение, синюшность):		
а) пальцев кистей, стоп;	5	0
б) целиком кистей, стоп?	5	0
4. Часто ли у Вас бывают ощущения сердцебиения, замирания, остановки сердца?	7	0
5. Отмечаете ли Вы повышенную потливость?		
В случае ответа «да» подчеркните нужное: постоянная или при волнении	4	0
6. Часто ли у Вас бывают ощущения затруднения при дыхании: чувство нехватки		
воздуха, учащенное дыхание? В случае ответа «да» уточните: при волнении, в		
душном помещении (подчеркните нужное)	7	0
7. Характерно ли для Вас нарушение функции пищеварительного тракта:		
склонность к запору, поносу, вздутию живота, боль?	6	0
8. Бывают ли у Вас обмороки (внезапная потеря сознания или чувство, что можете		
его потерять)? Если «да», то уточните условия: душное помещение, волнение,		
длительное пребывание в вертикальном положении (подчеркните нужное)	7	0
9. Бывают ли у Вас приступообразные головные боли? Если «да», уточните:		
диффузные или только половина головы, вся голова, сжимающая или		
пульсирующая (подчеркните нужное)	7	0
10. Отмечаете ли Вы в настоящее время снижение работоспособности, быструю		
утомляемость?	5	0
11. Отмечаете ли Вы нарушение сна?		
В случае ответа «да» уточните:		
а) трудность засыпания;		
б) поверхностный, неглубокий сон с частыми пробуждениями;		
в) ощущение невысыпания, усталости при пробуждении утром	5	0

Оценка результата: если сумма баллов ≤ 15 , признаков вегетативных нарушений нет.

ВЫВОД: (оцените наличие признаков вегетативных расстройств).

ОБЩИЙ ВЫВОД: (охарактеризуйте статус автономной нервной системы у обследуемого по совокупности проведенных тестов).

РАБОТА № 5. Оценка реактивности автономной нервной системы человека по электродермальной активности.

ЦЕЛЬ РАБОТЫ: Охарактеризовать функциональное состояние симпатического и парасимпатического отделов АНС у здоровых людей и пациента с диагнозом диабетическая полинейропатия по показателям ВКВП.

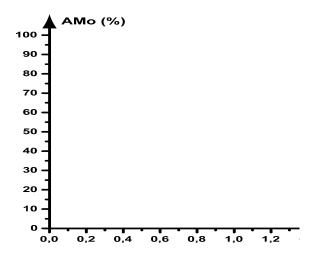
Табл. Показатели ВКВП с правой ладони при сверхпороговой однократной стимуляции

Показатели ВКВП	Здоровый, № 1	Здоровый, № 2	Больной с диагнозом диабетическая полинейропатия	Норма
ЛП, с	1,6	1,0	2,1	$1,69 \pm 0,05$
А1, мВ	0,5	0,28	0,15	$0,45 \pm 0,08$
А2, мВ	3,1	3,8	0,87	$3,16 \pm 0,05$
S1, c	0,6	0,5	1,0	$0,63 \pm 0,06$

S2, c	1,38	1,56	1,6	$1,41 \pm 0,1$
Характеристика				
реактивности				
BHC				

ВЫВОД: (какие показатели ВКВП нарушены у больного с диабетической полинейропатией и о чем это свидетельствует).

РАБОТА № 6. Вариационная пульсометрия.


ЦЕЛЬ РАБОТЫ: определение соотношения симпатических и парасимпатических влияний на сердце по вариабельности сердечного ритма.

ХОД РАБОТЫ: для работы использовать файлы со значениями кардиоинтервалов (КИ), зарегистрированными в покое у здоровых испытуемых. Необходимо построить гистограмму (для удобства обработки лучше импортировать файл в Excel и далее ранжировать КИ) (рис.1).

Определить значения показателей вариабельности ритма сердца:

- среднюю длительность КИ,
- · ЧСС (= 60 /средняя длительность КИ),
- · моду (Mo),
- · амплитуду моды (AMo) значение, выраженное в % к общему количеству КИ,
- \cdot вариационный размах (ΔX) = КИтах КИтіп,

$$\cdot$$
 интегральный индекс напряжения $MH = \frac{AMo}{2*\Delta X*Mo}$

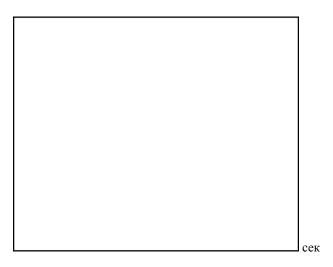


Рис. 1. Интервальная гистограмма распределения КИ.

Величины статистических параметров ВРС.

Средняя длительность КИ (сек)
ЧСС (уд./мин.)
Мода (сек)
AMo (%)
ΔΧ
Индекс напряжения ИН

ВЫВОД: (дайте заключение по полученной гистограмме, оцените механизмы вегетативной регуляции сердечной деятельности у испытуемого).

Подпись преподавателя -

Дата -

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7

ТЕМА ЗАНЯТИЯ: Основы функциональной диагностики системы крови.

РАБОТА № 1. Определение гематокрита (выполняется на виртуальной модели).

Гематокрит – это соотношение объема плазмы и форменных элементов крови.

ХОД РАБОТЫ: В главном меню выбрать «Blood analysis», эксперимент «Нетаtocrit Determination». Взять стеклянную трубочку и вложить в первую пробирку для набора крови. Переместить трубочку в кювету с реактивом (слева). Поместить трубочку с кровью в центрифугу. Повторить процедуру для остальных пробирок. Для центрифугирования выставить время 5 мин и нажать кнопку «Start». После окончания центрифугирования трубочки с кровью поочередно поднести к линейке, зарегистрировать данные нажатием «Record data» и убрать трубочку в желтый контейнер. Занести данные в таблицу.

РЕЗУЛЬТАТЫ РАБОТЫ

	Проба 1	Проба 2	Проба 3	Проба 4	Проба 5	Проба 6
Гематокрит						

ВЫВОД: (1) укажите, в каких пробах показатели гематокрита соответствуют норме; 2) о чем может свидетельствовать увеличение и уменьшение гематокрита).

РАБОТА № 2. Определение гемоглобина крови колориметрическим методом (выполняется на виртуальной модели).

ХОД РАБОТЫ. В главном меню выбрать «Blood analysis», эксперимент «Hemoglobin determination». Взять кювету для крови из камеры «Blood Chamber Dispenser» и поместить на столик. Добавить в кювету пипеткой кровь из пронумерованной пробирки (Sample 1). Поместить палочку для механического гемолиза "Hemolysis Sticks" в кровь и дождаться окончания процесса перемешивания. Извлечь палочку и положить в желтый контейнер. Поместить кювету в колориметр в верхнем левом углу. В появившемся окне «рычажком» сравнять цвет поля правой и левой половин. Зарегистрировать результат (Record data). Перенести данные в тетрадь, переводя в г/л (в данных указано значение в г на дл). Закрыть окошко колориметра, нажать «Ејесt» и убрать кювету в желтый контейнер. Повторить опыт с остальными пробирками.

РЕЗУЛЬТАТЫ РАБОТЫ

	Проба 1	Проба 2	Проба 3	Проба 4	Проба 5
Количество					
гемоглобина, г/					
Л					

ВЫВОД: (сравнить полученные данные с нормой).

РАБОТА № 3. Определение скорости оседания эритроцитов (СОЭ)

(выполняется на виртуальной модели)

ХОД РАБОТЫ. В главном меню выбрать «Blood analysis», эксперимент «Егуthrocyte Sedimentation Rate». Поместить 6 пробирок в пронумерованный штатив. Заполнить пробирки кровью из флаконов с соответствующими номерами. В первую пробирку добавить цитрат натрия (в остальные пробирки он добавляется автоматически). Нажать кнопку "Міх". После перемешивания заполнить пробирки в шкафу справа последовательно кровью из пронумерованных пробирок штатива. После заполнения каждой пробирки пустую необходимо убирать в желтый контейнер. После заполнения всех пробирок в окне «Тimer » выставить время - 1 час. Нажать кнопку "Start". После окончания процедуры каждую пробирку подносить к серому полю в правом верхнем углу, фиксировать результат измерения (Record data) и убирать пробирку в желтый контейнер.

РЕЗУЛЬТАТЫ РАБОТЫ

				•		
	Проба 1	Проба 2	Проба 3	Проба 4	Проба 5	Проба 6
СОЭ, мм/ч						

ВЫВОД: (1) сравнить полученные данные с нормой; 2) описать механизм СОЭ).

РАБОТА № 4. Определение групп крови и резус-фактора (выполняется на виртуальной модели)

ХОД РАБОТЫ. В главном меню выбрать «Blood analysis», эксперимент «Blood Typing». Взять кювету для определения групп крови (Blood Typing slide dispenser) и поместить ее на стол. Добавить кровь из флакона Sample 1 в кювету. Добавить цоликлоны: анти-А, анти-В, анти-Rh в соответствующие ячейки. Тестовые полоски (Stirring Sticks) помещать поочередно в ячейки кюветы: синий цвет - гр. «А»; желтый цвет - гр «В»; белый цвет - Rh — фактор. После использования каждую тестовую полоску убрать в желтый контейнер. Далее кювету с кровью поместить на столик с кнопкой «Light» и нажать кнопку. Отметить наличие реакции агглютинации нажатием positive (+), отсутствие агглютинациии — negative (-). Зарегистрировать данные нажатием «Record data». Убрать кювету с кровью в желтый контейнер. Повторить процедуру с кровью из флакона Sample 2. Перенести результаты опыта в тетрадь.

РЕЗУЛЬТАТЫ РАБОТЫ

(отметить, с какими анти-факторами произошла реакция агглютинации: negative (-); positive (+)).

пробы	с анти-А	с анти-В	с анти-Rh
1			
2			
3			
4			

ВЫВОД: (1) что представляют собой цоликлоны с позиции иммунохимического анализа и на чем основано их использование для определения групп крови; 2) назовите групповую принадлежность исследованной крови).

Подпись преподавателя -

Дата -

РАБОТА № 1. Спирография и спирометрия: определение дыхательных объемов.

А. Схема спирограммы (обозначьте все дыхательные объемы).

Б. Спирометрия

Цель работы: определить объёмы и ёмкости лёгких с помощью ручного спирометра.

Результаты работы: вписать значения измеренных объемов (мл) в схему (величину ОО принять за среднестатистическую для взрослого человека).

ОЕЛ	ЖЕЛ	ЕВд	РОВд	максимальный вдох	
			ДО	спокойный вдох	•
		ФОЕ	РОВыд	спокойный выдох	
			OO	максимальный выдох	-

ВЫВОД: (указать, соответствуют ли норме данные испытуемого).

РАБОТА № 2. Расчет должной жизненной емкости легких.

Формулы для расчета ДЖЕЛ:

ДЖЕЛ для мужчин = (27,63 - 0,112 * на возраст в годах) х рост в см

ДЖЕЛ для женщин = (21,78 - 0,101 * на возраст в годах) х рост в см

За отклонение от нормы принято считать снижение ЖЕЛ по сравнению с ДЖЕЛ больше, чем на 20%.

Рассчитайте свою ДЖЕЛ =

ВЫВОД: (сравните свою ДЖЕЛ с ЖЕЛ):

РАБОТА № 3. Регистрация спирограммы и определение дыхательных объемов на виртуальной модели.

ХОД РАБОТЫ. В программе виртуальных задач выберите раздел Respiratory system mechanics. Для начала эксперимента нажмите кнопку «Start». На мониторе появится график дыхательного цикла. После двух — трех дыхательных движений нажмите кнопку «FVC» (форсированная ЖЕЛ), дождитесь максимального вдоха и выдоха модели легких и изменения графика. Затем нажмите кнопку «Stop». Дыхательный цикл прекратится. Нажмите «Record Data» и зафиксируйте в рабочей тетради график и показатели внешнего дыхания. С помощью кнопки «Radius» уменьшите радиус бронхов с 5.0 до 4.0 мм нажатием «минус». Нажмите кнопку «Start», повторите регистрацию тех же показателей.

РЕЗУЛЬТАТЫ РАБОТЫ

Нарисуйте графики дыхательных движений (с пробой на Φ ЖЕЛ): A: радиус бронхов = 5,0 мм, Б: радиус бронхов = 4,0 мм

Таблица 1. Значения показателей внешнего дыхания.

Показатель, мл	Норма, мл	При радиусе бронх	
		5,0 мм	4,0 мм
ДО (T.V. – tidal volume)	400 - 800		
PОвыд (E.R.V expiratory reserve volume)	1000 – 1500		
РОвд (I.R.V inspiratory reserve volume)	1500 – 2500		
OO (R.V. – residual volume)	1000 – 1300		
ФЖЕЛ (V.C. – vital capacity)	3000 - 5000		

O Φ B1 (F.E.V ₁ – forced	-	
vital capacity in 1 sec)		
ОФВ1/ФЖЕЛ	>70%	
(индекс Тиффно)		
ОЕЛ (T.L.C. – total lung	4000 - 6000	
capacity)		

ВЫВОД: (сравните показатели внешнего дыхания с нормой при различном радиусе бронхов).

РАБОТА № 4. Спирограмма и дыхательные объемы у здорового человека и пациентов с обструктивными нарушениями (виртуальная модель).

ХОД РАБОТЫ. В разделе Respiratory system mechanics войдите в меню Experiment и выберите Comparative spirometry. Далее выберите состояние пациента по кнопке Patient Type (Normal) и спокойный паттерн дыхания по кнопке Breathing Pattern (Unforced Breathing). Далее нажмите кнопку Start, дождитесь конца регистрации и смените паттерн дыхания на форсированный (Forced Vital Capacity). Зарисуйте график и зафиксируйте показатели дыхания в таблице нажатием кнопки на каждый из показателей. Повторите процедуру для пациента с эмфиземой и астмой.

Прим.: на мониторе запись спирограммы идет с правой стороны экрана к левой, на рисунке отсчет времени должен начинаться слева!

Нарисуйте графики дыхательных движений (с пробой на ФЖЕЛ)

А: норма, Б: при эмфиземе, В. при астме

Таблица 2. Значения показателей внешнего дыхания у пациентов с различным функциональным состоянием дыхательной системы.

Показатель, мл	Норма, мл	Дыхательная функция		
		Норма	Эмфизема	Астма
ДО (Т.V.)	400 – 800			
РОвыд (E.R.V.)	1000 - 1500			

РОвд (I.R.V.)	1500 - 2500		
OO (R.V.)	1000 - 1300		
ФЖЕЛ (F.V.C.)	3000 - 5000		
ОФВ1 (F.E.V ₁)	-		
ОФВ1/ФЖЕЛ (индекс Тиффно)	>70%		
ОЕЛ (T.L.C.)	4000 - 6000		
ЕВд (=ДО+Ровд)			

ВЫВОД: (сравните показатели внешнего дыхания у людей с нормальной дыхательной функцией и обструктивными заболеваниями легких).

РАБОТА № 5. Функциональные пробы с задержкой дыхания.

Цель работы: 1) определить продолжительность задержки дыхания на высоте максимального вдоха или выдоха, 2) оценить реактивность кардиореспираторной системы в ответ на задержку дыхания.

- 1) Проба Штанге задержка дыхания после максимального вдоха (норма 30 60 с),
- 2) Проба Генчи задержка дыхания после максимального выдоха (норма 20 40 с).

ХОД РАБОТЫ. Пробы проводят в положении стоя. Сначала определяют ЧСС за 1 мин. Затем делают глубокий вдох-выдох (1-3 цикла), потом глубокий вдох (в пробе Штанге) или выдох (в пробе Генчи) и задерживают дыхание (при этом рот закрыт, нос зажат пальцами). После окончания задержки дыхания снова определяют ЧСС за 1 мин. Промежутки между пробами должны составлять около 3 мин.

Таблица 3. Результаты функциональных проб Штанге и Генчи.

	таолица э. гезультаты функциональных пр									
Проба	ЧСС до		Время задержки (с) и ЧСС							
			Попытки					Ср	едне	е значение
		1	ЧСС	2	ЧСС	3	ЧСС	Время	ЧСС	Индекс ЧССдо/ЧСС
Штанге										
Генчи										

ВЫВОД: (сравнить средние значения времени задержки дыхания с нормой, оценить реактивность кардио-респираторной системы и объяснить механизмы изменения ЧСС после задержки дыхания).

РАБОТА № 6. Влияние уровня СО2 в крови на кривую диссоциации оксигемоглобина.

Нарисуйте кривые диссоциации оксигемоглобина при разном ${\rm pCO_2}$ в артериальной крови

 $1 - \text{при pCO}_2 = 40 \text{ мм рт ст}$

 $2 - \text{при pCO}_2 = 35 \text{ мм рт ст}$

 $3 - \text{при pCO}_2 = 50 \text{ мм рт ст}$

ВЫВОД: (с чем связаны и какое адаптивное значение имеют сдвиги кривой диссоциации оксигемоглобина при гипо- и гиперкапнии).

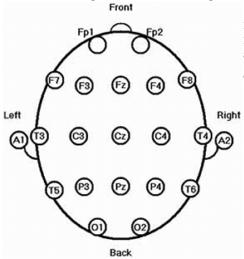
Подпись преподавателя -

Дата -

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 9

ТЕМА ЗАНЯТИЯ: Основы функциональной диагностики головного мозга. Электроэнцефалография.

РАБОТА № 1. Метод электроэнцефалографии.


ЦЕЛЬ РАБОТЫ: используя количественные показатели спектрального анализа ЭЭГ, научиться оценивать функциональное состояние человека в состоянии спокойного бодрствования и при проведении функциональных проб.

Электроэнцефалограмма (ЭЭГ) — запись колебаний электрических потенциалов головного мозга со скальпа.

Методика записи использованных образцов ЭЭГ. Прибор - электроэнцефа □лограф

«Нейрон-спектр-1». В данной работе используют 8 каналов регистрации ЭЭГ, в отведениях О1, О2, Т3, Т4, С3, С4, Fp1, Fp2 согласно международной системе «10-20». Референтные электроды устанавливают на мочках ушей (A1, A2), заземляющий в точке пересечения воображаемых линий, проходящих от основания носа до затылочного гребня и линии, соединяющий правое и левое ухо (vertex). Электроды — мостовидные, в качестве проводящей среды используют физ. раствор.

Рис. Схема расположения электродов

А) На рисунке обведите цветным карандашом точки локализации электродов, используемых в данной работе. Б) Укажите, активность каких долей мозга в большей степени

отражается на ЭЭГ в отведениях:

O1,O2 -

T3, T4 -

C3, C4 -

Fp1, Fp2 -

Протокол проведения обследования.

Сначала записывают ЭЭГ при открытых глазах в течение 120 сек, затем по указанию экспериментатора испытуемый закрывает глаза, и в этом состоянии ЭЭГ регистрируют в течение 120 сек, далее испытуемый снова открывает глаза, и запись ЭЭГ продолжается 120 сек. После этого испытуемый приступает к выполнению корректурного теста (КРТ) в течение 15 минут. Результаты корректурного теста записывают в протокол исследования.

РЕЗУЛЬТАТЫ РАБОТЫ

ФИО ОБСЛЕДОВАННОГО:	

Таблица 1. Амплитуды пиков спектральной мощности ритмов ЭЭГ (мк B^2 / Γ ц) в отведениях O1, O2 при закрытых глазах.

Ритм (диапазон частот)	Слева (О1)	Справа (О2)
Тета-ритм (5-7 Гц)		
Альфа-ритм (8-13 Гц)		
Бета-ритм (14-20 Гц)		

Бета-ритм (21-35 Гц)	
Бета рити (21 33 гд)	

ВЫВОД: (сопоставьте выраженность альфа-, бета- и тета-ритмов ЭЭГ в затылочных отведениях при закрытых глазах)

Таблица 2. Амплитуды пиков спектральной мощности альфа-ритма ЭЭГ (мк B^2/Γ_{II}).

Отведения	Глаза с	эткрыты	Глаза закрыты		Глаза открыты		Глаза открыты +КРТ	
	слева	справа	слева	справа	Слева	справа	слева	справа
Затылочные (О)								
Височные (Т)								
Центральные (С)								
Фронтальные (Fp)								

ВЫВОД: 1) оцените выраженность лобно-затылочного градиента альфа-ритма в записи с закрытыми глазами, 2) сравните выраженность альфа-ритма при открытых и закрытых глазах, 3) оцените влияние когнитивной нагрузки на выраженность альфа-ритма, 4) охарактеризуйте функциональное состояние головного мозга по показателям ЭЭГ)

РАБОТА № 2. Выполнение корректурного теста.

Инструкция: испытуемый в каждой строке должен найти и зачеркнуть буквы К и Р, а также подсчитать их общую сумму в данной строке. Результат записывают карандашом рядом со строкой. Работать необходимо быстро и точно. Время работы 4 мин. После проведения теста экспериментатор проверяет правильность выполнения.

Корректурный тест (40 строк)

ЪАКЖКЩЗЫЙЪУОЗПЧБЫЮИВЛЧЮКЛУДДХСДНДЩУАЮЩХШШБЧЭГНХДЛЯКРЮА

РЧПКЪКТИИЗЦЦГУЪМЯОУШРТУДЫЛЕВГИБКИЗТВЩМДЛЕКЖУРПЩСЖЫЭЮЯЪК ПУНЧЪЧЪГУХАФДЮТЪКМПРИЭЮТФХАРДПЪРКБЦКЪГБУШГВЩВЪЦУНФПБЪЖБ СЧШЮДЪЪЦРСЬЙЛТЭЬСБЮУРКЪЦШХЭЬЧАЕБЖДДРТТХЕЮВАРББЪЗЛССЫВАМ **ЧРИНДИВИТЕТ В ТЕГОТОРИТЕТ В** АЦЗСПРТКЮЦБШККОЯРКЬТКМЪЪХЯХЦЙЯЦЙВЙШЙЕПЖМЬВЗЦБВЫУТЩХВКПЦ ЦРПЬСХШЛУЬЕЮЮЫНРШЩГАУШСЩЛЫПККИДЯЭСРКЮКЖМИЧЪМХАТПЯУИФРЫ БШУБЫКЬГККХОЖДРКТЯСЬЛИЕЭБЬЪЖОБИЪБПЙЩВТРЬТКАВЬХМНЕФШРЦЮР ЛГЕЯГВПМОСУМФНСБЯЬЧЗЙОФРПТНИЬРДЧЦШЛДЖЦХЙАЮКЕЪХИРЯУЫПРДА ОЬКРАЭИБКДЦЧАБЖЭШЕОРПЖБРЧЖТЕЩИРКСАПИХЪЖРРХБЭМСГШПЛЙВХЗЯ ЛЮЛЛЦЖНЮЩЪБКЗМЮХВЦТТБЕФОКЦЮДЪЗРЪВЙСГХЪЫМБВРСУЮСМКВХГМЛУ БСРКЦХЬЯЙЦТЧМБОЮЮБВЕЖМГЫРАРЩЪЕГТЦПЛЕУРРДЩЗДЫШЛЪВКФЖХЖНК ЮИТГЭБАФЛАСРЗЩКЯЖТМНЬФКЮЮЧИСШЗЦЩЖДДУАКАВБФЦГТКСРУУЭЗЖЦС ФБЩОХПБГЫЕЙЗКТСЮШРМБЕФЗБЦПДПЬФКСЬУЖДВЛЖЗЩЖЕККГСШЫХМШЖБЖ КПЮЭЖПБЯЕЗМООЮДЩВНБСИЫПЗУЬЪТУЦЫЫЦЗНРЫМЫЗВЕАЧХАРЧЖЯИЮХЫЩ КЛСРЭЕГОХХЧГГЫЦЖШДЫЪОЧТБПББЗВХЖМЛШЛДФОРЮШВКМНМВГПЫАЬОГР РРПЗЛЯЧАМЕИВЬЦОАЧШУЫЦЛЛЪЛЗКДЗЬГЭФЭЗЛРДЛПРСБПРЪЖЖПШБЙЗРЧ ЮЦЩЙБФСФЗТЭЧРПЧВБФХУИЮЬШУИЪЪГЭЛЮЕНЮЪЬАКШШШЮЭРЙГБОЛЩНОЯ

ЪДИДЦЖТЫЭУПРЙИСЭОХККЬВЕИЗЫЛСГЩЛЧЯРЕВНЪЫГЦБХШМАЪНВУЧЯХЗЙ ЙТЙАРНИВЮЩГФЧКБЧЩДЦЪДЯЭЮШТКЫШЬФИЗКХЩРРЖХЮММАЬДЩДЭРЙЗЧКБ ШЪНТКВЭХКЪОИОХЦВЬЫЮДЖЕЪЖЫББШИЫУИЭИЕОРВХЯЮЭЫЗРХКАКГРУШЧБ ДУОВПЗЩЪЫКТРУАШФЦЕЙЭЩНУОВСПЬЪСБЖРТЭАЦЬТНДКЬЦСЛУРНЦКЕИОУ МЩКОЯРРУЗВЕФНПЬОРЖКЩЭРЯУВБЪЛЙИЙЯИЫДЗБААЮМЛИАХШУАЯЧДЧУЛТ ЮМЩЪШМШРЦЬЮЪМРФСЙСТККУПКЯДЙЩГЕЛЪОЩЕМЭДИНТШХХЛТСККХХЪУЛ 3

ГЙЬЭЖЫКЪЧСАЖГЛРЫЮМЦХАХАЮМГРЛГЭУШЪЮПЯЬЫЩШЦВОДНЗЯФЯХРРМЖУ ФЛЯЪЩЛУРВСКСДЭРЛКМББКВХРРЧЖЯЬВЗЫЯЮИДИКНЩЛБУИБУТКЫВЫВОЩЛ КЧИГЪБККСНСЗЧМКЗКРИДОРВИКУЭХГХШТАВОУЫЩГЦАЙФАПЭСРЪМЪЮЩЬД СКПРРХЭЙИБЗЩФЫЪТОКЛХЮУБЦЫИЕМАОРГКЩУСРЭЪДЩЕАМБКШДРДТРЭОА ПЪШЖРСЬФЕЪФГЮГЖТЗИХФХГАБЪДМММЕЖИСЧДЫЛДСЯТГЖРЬЛАЭКПСЩБЦР ЦЛАДРЦЖВЕБЙАЛКФЛБОПТЭЫРПЫЩЛЖАДМБТЧЙПВЙТМХПЮЛВЭЩЕОУКДЦРВ ЩЕРАЕЦИЯЪХШТХЛЛКТНЖЙВВБЮЬЕОЖГПЪТМЗОРЬЫРЮРШКЭФЕРШРЧЫХЖФВ ОВАКПРАЕУЧВВМХФСРЩШМКСЧЩЪХИВДАЦЮДМЛЦРТОЭПКВБССЫНВЧККЯЙГ ВЧКРКЬИЬЦЫЦЭЕНЕСШЕРЕКМВЖШЗОМНОЬЩАХВСЩЫФИШЧБСТРУАЛШЗОНДШ НЮВЯДЪКЮОЬЖРКМЖМЖШЫЯКБЮКЗПХРРЮВИКЫТРИИПНЬПДИЦРРОЮТЯЩФК Р

Результаты работы с корректурным тестом

1 65 9.1	omamoi pai
Показатели	Значение
Число ошибок (суммарное)	
Скорость восприятия (б/сек)	
Устойчивость внимания	
Точность работы	
Продуктивность работы	

Оцените устойчивость внимания по таблице 1:

УВн	Уровень концентрации внимания
5,3—50,6	Низкий
50,7—96,0	Средний

96,1—171,9	Высокий
172,0—1101,5	Очень высокий

ВЫВОД: (охарактеризуйте функциональное состояние обследуемого по показателям КРТ)

Подпись преподавателя -

Дата -

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ № 10-11

ТЕМА ЗАНЯТИЙ: Основы диагностики выделительной функции почек.

РАБОТА № 1. Влияние различных факторов на скорость клубочковой фильтрации и объём конечной мочи (выполняется на виртуальной модели нефрона).

Цель работы: исследовать влияние изменения радиуса приносящей и выносящей артериол на величину фильтрации и объём конечной мочи.

Ход работы. Запустить программу «Start», выбрать раздел Renal System Physiology (Физиология почки) из главного меню, в разделе Experiment - Simulating glomerular filtration. Выделить «Давление» (Pressure) в окне Data Sets блока управления данных. Заполнить левую мензурку (источник крови) нажав REFILL. Установить величину давления в левой мензурке 70 мм рт. ст. (соответствует артериальному давлению в почечных сосудах), радиусов приносящего (afferent) и выносящего (efferent) сосудов — 0,4. Нажать «Старт». Наблюдать процессы фильтрации и образования мочи. Повторить опыт, изменяя поочередно значения радиусов приносящего и выносящего сосудов, давления в соответствии с табл.1. После каждого эксперимента записать данные нажатием «RECORD DATE».

РЕЗУЛЬТАТЫ РАБОТЫ

Таблица 1. Показатели мочеобразования.

Радиус	Радиус	Давление в	Давление в	Клубочковая	Объём
приносящего	выносящего	мензурке	капиллярах	фильтрация	мочи
сосуда	сосуда	(Beaker	клубочка	(Glom.Filt.Rate)	(Urine
		Press)	(Glomerular		Volume)
		мм рт.ст.	press.)		
0,4	0,4	70			
0,55	0,4	70			
0,4	0,35	70			
0,4	0,4	100			

ВЫВОД: (1) написать формулу фильтрационного давления для нефрона, 2) объяснить механизм изменения объема диуреза при изменении радиусов приносящей и выносящей артериол и артериального давления в сосудах почки).

РАБОТА № 2. Влияние гормонов на процесс мочеобразования. (выполняется на виртуальной модели нефрона).

Цель работы: Охарактеризовать действие гормонов антидиуретического (АДГ) и альдостерона на объём конечной мочи.

Ход работы. Запустить программу «Start», выбрать раздел Renal System Physiology (Физиология почки) из главного меню, в разделе Experiment - Simulating Urine formation. Нажать Start. После окончания мочеобразования записать данные (Record Data). Взять пипетку из флакона с АДГ и поднести к открывшейся крышке над собирательной трубкой. Нажать Start. Затем записать данные. Повторить эксперимент, используя альдостерон.

РЕЗУЛЬТАТЫ РАБОТЫ

Таблица 2. Влияние АДГ и альдостерона на диурез.

Альдостерон	АДГ	Объём мочи, мл
-	1	
+	-	
-	+	

Вывод: (описать изменения количества конечной мочи под влиянием АДГ и альдостерона, объяснить их механизмы).

РАБОТА № 3. Определение скорости клубочковой фильтрации (СКФ)

СКФ можно измерить путем определения клиренса креатинина. Норма 90-150 мл/мин (муж), 90-130 мл/мин (жен). Единицы значений концентрации креатинина: мг/дл или мкмоль/л Креатинин (мг/дл) = креатинин (мкмоль/л) / 88.

1) Определение СКФ расчетным методом

• no D.W. Cockroft и M.N. Gault (мл/мин):

```
для мужчин СКФ = [(140 — Возраст (лет)) · Масса тела (кг)] : (72 · P_{Cr}) для женщин СКФ = [(140 — Возраст (лет)) · Масса тела (кг)] · 0.85 : (72 · P_{Cr}). (P_{Cr}- креатинин плазмы, мг/дл)
```

• по формуле СКD-EPI (мл/мин/1,73 2) — нормализована по отношению к средней площади поверхности тела взрослого человека (1,73 2)

P_{cr} ,	
мг/100 мл	Формула

Пол	MI7 TOO MIJI	Формула		
Женский	≤0.7	144*(0.993) возраст * (Р _{Сг} /0.7) ^{-0.328}		
Женский	>0.7	144*(0.993) BOSPACT * (PCr /0.7)-1.21		

Мужской	≤0.9	$141*(0.993)$ BOSPACT * $(P_{Cr}/0.9)^{-0.412}$
Мужской	>0.9	141*(0.993) возраст * (Р _{Сг} /0.9)-1.21

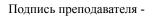
Характеристика стадий хронической болезни почек по уровню СКФ

Стадия	12. p. m. m. p. m.	Уровень СКФ (мл/	
ХБП	Характеристика	мин/1,73м²)	
C 1	Высокая или оптимальная	>90	
C 2	Незначительно сниженная	60-89	
C 3a	Умеренно сниженная	45-59	
С 3б	Существенно сниженная	30-44	
C 4	Резко сниженная	15-29	
C 5	Терминальная почечная недостаточность	<15	

Рассчитайте СКФ по приведенным параметрам пациентов

Ŋoౖ	Пол	Возраст (лет)	Масса тела (кг)	$P_{\it Cr}$ (мг/дл)	СКФ по ф-ле Cockroft, Gault	СКФ no ф-ле CKD-EPI	Оценка уровня СКФ
1	муж	30	80	0.9			
2	муж	30	85	1.0			
3	жен	30	60	0.7			
4	жен	30	67	0.9			

2) Проба Реберга: определение СКФ путем измерения концентрации эндогенного креатинина в плазме крови (Pcr), в выделенной моче (Ucr) и объема мочи за единицу времени (V)


Напишите формулу клиренса креатинина.

Ccr =

Рассчитайте клиренс креатинина (Ссг) у пациентов (мужчины, 30 лет)

№	P_{Cr} (мг/дл)	Ucr (мг/дл)	V (мл/мин)	Ccr	
1	0.9	101	1		
2	1.0	99	1		
3	0.8	70	1,1		
4	0.95	60	1		

ВЫВОД: (1) сравните данные СКФ в пробе Реберга с нормой, 2) сравните данные СКФ в пробе Реберга и рассчитанные по формулам у пациентов № 1,2):

