Факторы патогенности микроорганизмов

Профессор Кафарская Л.И.

«Инфекция» (заражение)

совокупность биологических процессов, происходящих в макроорганизме при внедрении в него патогенных микроорганизмов, независимо от того, повлечет ли это внедрение за собой развитие явного или скрытого патологического процесса или оно ограничится только временным носительством или длительным персистированием возбудителя.

Инфекция

Инфекционные болезни рассматривают как явления, включающие биологический и социальный факторы. Так, механизмы передачи инфекционных болезней, их тяжесть, исход обусловлены главным образом социальными условиями жизни людей.

Инфекция

- Отличия от других заболеваний
- Заразительность (контагиозность)
- Цикличность (периоды)
- Развитие противоинфекционного иммунитета
- Инкубационный период

Патогенные микроорганизмы

Характерными свойствами патогенных микроорганизмов являются специфичность (способность вызывать определённую инфекционную болезнь после проникновения в организм) и органотропность (способность предпочтительно поражать определённые органы или ткани).

- Место проникновения возбудителя называется входными воротами.
- Как правило это ткани, лишенные физиологической защиты против конкретного вида микроорганизмов, служат местом его проникновения в макроорганизм или входными воротами инфекции.
- Цилиндрический эпителий для гонококков.
- Стафилококки, стрептококки могут проникать **несколькими путями**

Инфицирующая доза возбудителя

Инфицирующая доза возбудителя — минимальное количество микробных клеток, способных вызвать инфекционный процесс. Величина инфицирующей дозы зависит от вирулентных свойств возбудителя. Чем выше вирулентность, тем ниже инфицирующая доза.

Инфицирующая доза

- Для высоковирулентного возбудителя Yersinia pestis (чума) достаточноао несколько бактериальных клеток.
- Shigella dysenteriae десятки клеток.
- Для некоторых возбудителей тысячи-сотни тысяч – холера
- Инфицирующая доза низковирулентных штаммов равна 10⁵-10⁶ микробных клеток.

Периоды инфекционного заболевания

1 период - Инкубационный - от момента заражения до проявления клинических симптомов

Локализация возбудителя - во входных воротах инфекции и/или л/узлах

Периоды инфекционного заболевания

4-й период - **ИСХОД ЗАБОЛЕВАНИЯ** (outcome):

- Реконвалесценция
- Переход в хроническую форму
- Формирование бактерионосительства
- Летальный исход

Периоды инфекционного заболевания

2-й период - **ПРОДРОМАЛЬНЫЙ** (prodrome):

это проявление "общих симптомов" – дискомфорт, усталость, озноб.

Клинически – это интоксикация.

Локализация возбудителя – проникает в кровь, лимфу, происходит секреция токсинов, проявляется активность факторов врожденного иммунитета

- В настоящее время наблюдается переход от традиционного представления о бактериях как строго одноклеточных организмах к представлению о микробных сообществах как целостных структурах, регулирующих свои поведенческие реакции в зависимости от изменения условий обитания.
- Сегодня накоплено достаточно данных о механизмах, посредством которых осуществляются внутрипопуляционные, межштаммовые и межвидовые контакты у микроорганизмов, а также их взаимодействии с организмом хозяина

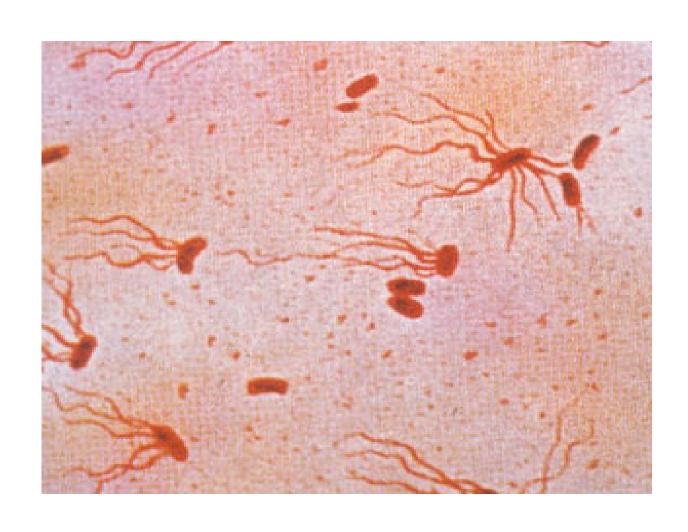
Пути проникновения возбудителя в макроорганизм

Через слизистые оболочки

- Присутствуют факторы естественной защиты
- Преодолевая эту защиту микроорганизмы прикрепляются к клеткам эпителия и колонизируют его,
- Далее проникают в лимфатическую систему, кровь, ткани внутренних органов

Через микротравмы кожи

• - Возможно трансмиссивно. Возбудитель, минуя естественные барьеры кожи и слизистых оболочек проникает в лимфатическую систему и в кровь


Факторы патогенности микроорганизмов

- Факторы адгезии и колонизации
- Факторы инвазии
- Антифагоцитарные факторы
- Факторы, нарушающие иммунную защиту
- Токсические факторы

Факторы адгезии

- Адгезия происходит на поверхности слизистых оболочек различных органов и систем.
- Адгезия начинается как обратимый процесс, затем переходит в необратимый
- На первых этапах участвуют силы электростатического взаимодействия, гидрофобные связи, активная подвижность микроорганизмов.
- Наличие жгутиков позволяет эффективно приближаться к поверхности клетки

Жгутики способствуют приближению к поверхности клетки

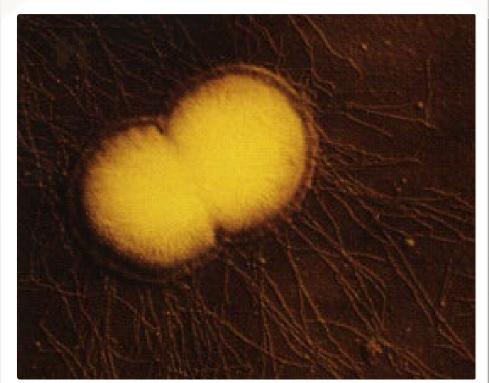
Холерные вибрионы

Адгезия

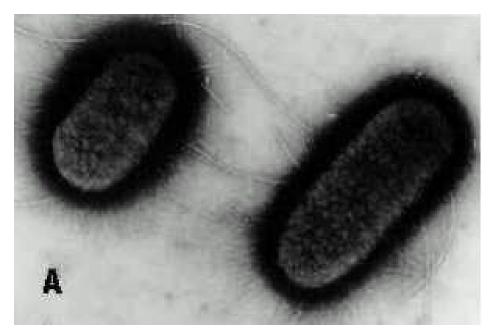

- На клетке хозяина имеются рецепторы разнообразные молекулы (гликолипиды, маннозные остатки, протеогликаны).
- Рецепторами для адгезинов грам (+) бактерий чаще всего являются фибронектин и белки межклеточного матрикса.
- Лиганд-рецепторное взаимодействие высокоспецифичный процесс, при этом клетка хозяина –активный участник.
- Патогены активируют сигнальные пути трансдукции, в дальнейшем происходит активация рецепторов.

- Адгезия завершается <u>лиганд-рецепторным</u> <u>взаимодействием.</u> Это высокоспецифичный процесс
- При котором адгезины комплементарны рецепторам клетки.
- Со специфичностью адгезии связан микробный тропизм
 – способность микроорганизмов поражать
 определенные органы и ткани.
 (Гонококки цилиндрический эпителий слизистой
- Наличие капсулы или слизи может способствовать адгезии.

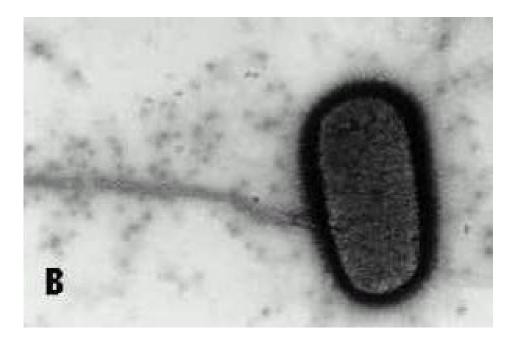
уретрального тракта или конъюнктивы глаза).


• Некоторые бактерии могут нарушать двигательную активность ресничек цилиарного эпителия дыхательных путей (синтез цилиотоксичных/цилиостатичеких молекул у Bordetella pertussis, пневмококки, Pseudomonas

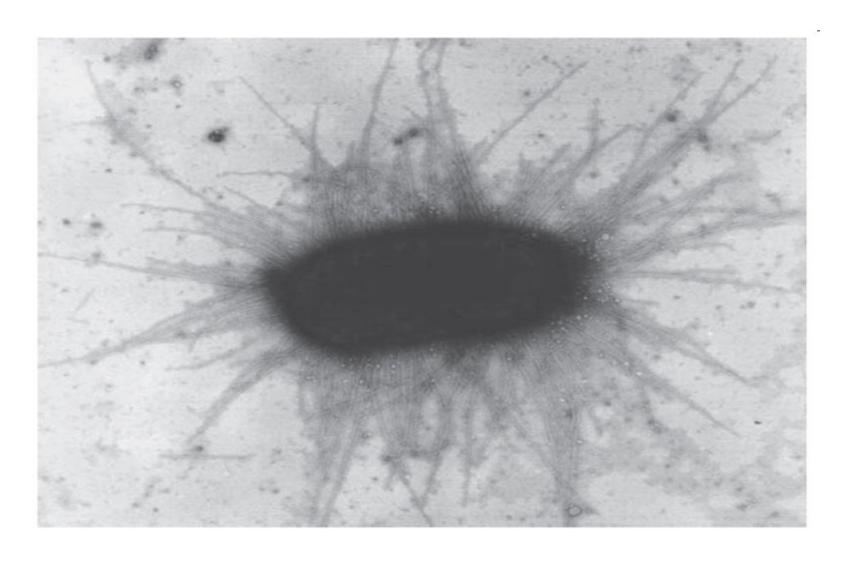
Колонизация эпителия трахеи **Bordetella pertussis** (клетки без ресничек свободны от бактерий)


Факторы адгезии

- У грамотрицательных бактерий функцию распознавания и прикрепления бактерий чаще осуществляют пили или фимбрии. Они короче и тоньше жгутиков. Их длина может достигать 10 нм (иногда до 2 мкм). Большинство типов фимбрий, кодируется хромосомными генами, реже плазмидами.
- <u>Пили</u> белковые структуры, состоящие из <u>белка</u> <u>пилина</u>, к которому могут присоединятся углеводный и белковый компоненты.
- За необратимую адгезию отвечают высокоспецифичные структуры, гликопротеины и гликолипиды.


У грамотрицательных бактерий факторами адгезии служат фимбрии (фимбриальные адгезины) или белки наружной мембраны.

Фимбрии у гонококков. Количество 100-500. Состоят из пилина.



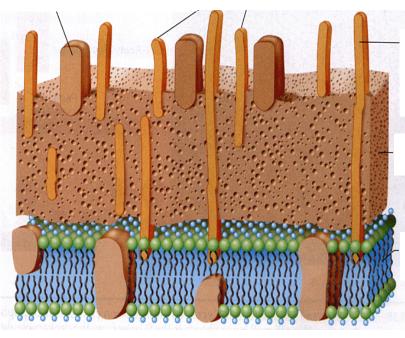
(A) Электронная микрофотография негативно контрастированных *E coli*. Показаны извитые жгутики и многочисленные короткие тонкие и более ригидные волосоподобные структуры, пили.

(В) Длинные F-пили можно отличить от коротких обычных (простых) пилей путем смешивания клеток *E coli* со специфическими бактериофагами, способными селективно связываться с F-пилями

Пили E.coli

Адгезины

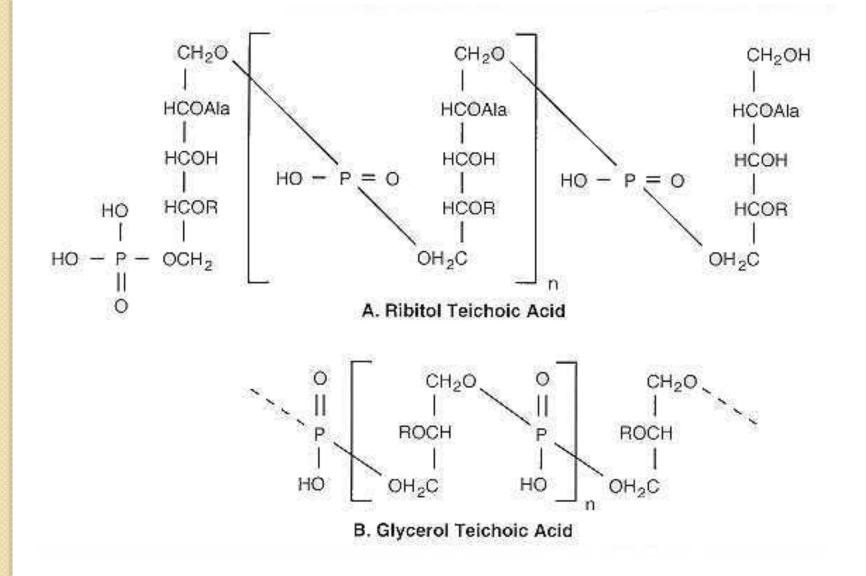
- Афимбриальные адгезины филаментозный гемаглютинин у Bordetella pertussis, ответственный за прикрепление к реснитчатому эпителию дыхательных путей.
- Фимбриальные адгезины обеспечивают более эффективную адгезию, чем афимбриальные. Они оказываются локализованными на длинной тонкой ножке, что облегчает их контакт с рецептором и, вероятно, позволяет преодолевать барьер "нормальной" микрофлоры и другие защитные механизмы.


Адгезия

Колонизация эпителия трахеи Bordetella pertussis (клетки без ресничек свободны от бактерий)

Белки клеточной стенки

Тейхоевые кислоты


Липо-тейхоевые кислоты

Пептидогликан

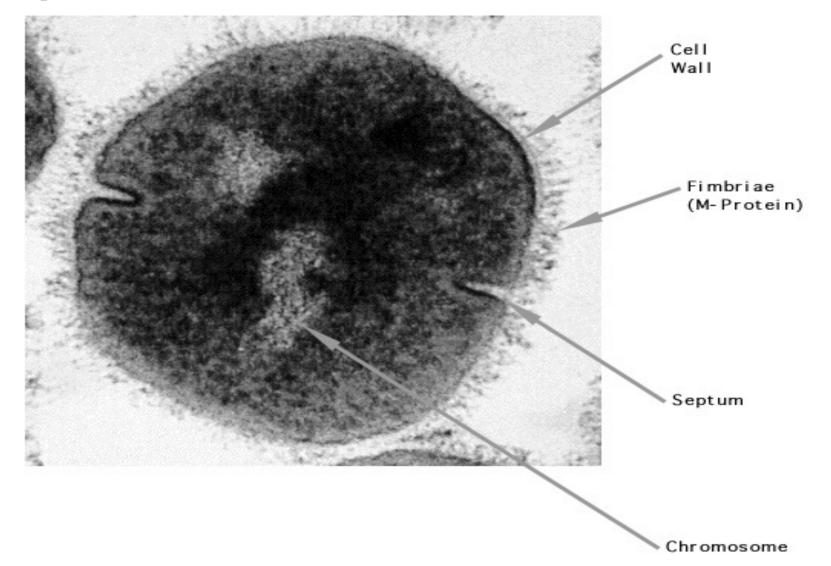
ЦПМ

Тейхоевые и липотейхоевые кислоты, наружные белки клеточной стенки

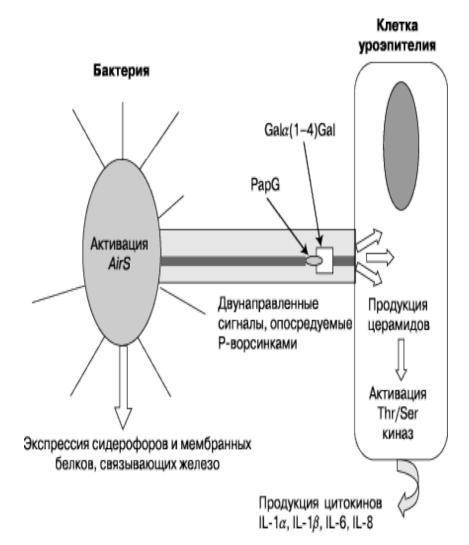
Факторы адгезии у грамположительных бактерий

Figure 2-9. Структура тейхоевых кислот (A) Рибитол тейхоевая кислота с повторяющимися фрагментами связанными 1,5-фосфодиэфирными связями D-рибитола и D-аланилового эфира в позиции 2 и гликозильные радикалы (R) в позиции 4. Гликозильными группами могут быть N-acetylglucosaminyl (α or β) как у *S aureus* или α -glucosyl как у *B subtilis W23*. (B) Глицерол тейхоевая кислота с 1,3- фосфодиэфирными связями между повторяющимися глицерольными субъединицами (1,2-связи у некоторых видов

Адгезия

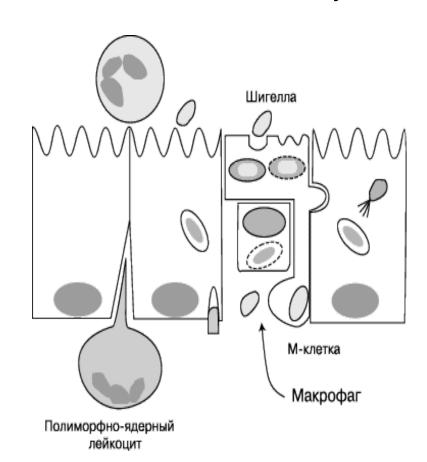

У грамположительных бактерий –

- Тейхоевые и липотейхоевые кислоты.
- Фибронектин связывающие белки (стафилококки, стрептококки).
- М-протеин у стрептококков группы А.


Streptococcus pyogenes. Cell surface fibrils

M protein and fimbriae of Group A streptococci — адгезия и защита от фагоцитоза

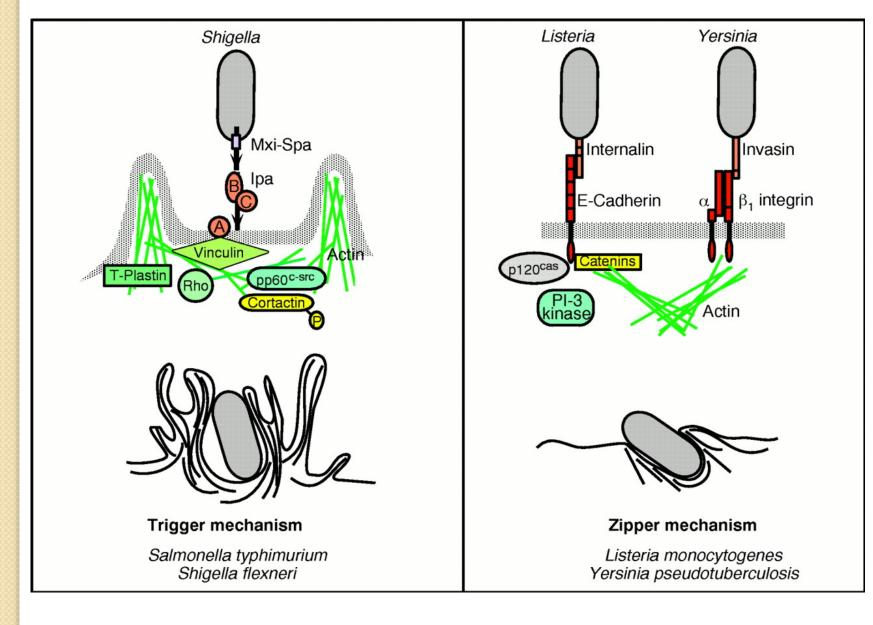
- Уропатогенные эшерихии экспрессируют два вида ворсинок: <u>Р-ворсинки и ворсинки I типа,</u> связываются с разными рецепторами
- Адгезия служит сигналом к запуску каскада сложных реакций как у бактерии, так и у макроорганизма. Связыванием Р-пилей усиливается поглощение железа
- Ворсинки I типа связ. с рецептором высвобождаются, церамиды активаторы серин/треониновых киназ, стимулирующих синтез ряда цитокинов (IL 1,IL 6,IL 8).

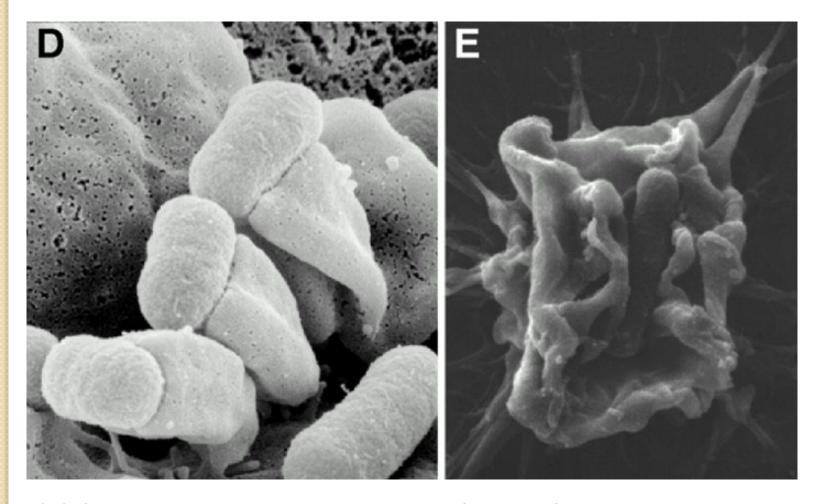

Инвазия – распространения микроорганизмов в межклеточных пространствах тканей организма хозяина и проникновения их внутрь его клеток.

Инвазия

- При инвазии рецепторами эукариотических клеток являются их мембранные молекулы, основная функция которых - межклеточные взаимодействия.
- Инвазивные энтеробактерии в качестве рецепторов используют *интегрины* эукариотических клеток.
- Листерии в качестве рецептора используют кадхерин. Эти молекулы эпителиальных клеток играют основную роль в поддержании структуры тканей, обеспечивая физический контакт эукариотических клеток.

Инвазия


- Адгезия сигнал к синтезу белков (ІраВ, ІраС и ІраD), выполняющих функции инвазинов. Их транспорт внутрь эукариотической клетки осуществляет специальная система секреции, относящаяся к ІІІ типу.
- Перечисленные белки вызывают интенсивную полимеризацию актина внутри М-клетки, приводящую к формированию псевдоподий, охватывающих бактериальную клетку, и вакуоли.
- Бактерия "заставляет" клетку эпителия захватить себя


- Yersinia spp., Salmonella spp. и Shigella spp. осуществляют инвазию кишечного эпителия, основными "воротами" являются М-клетки.
- Одной из основных функций Мклеток является транспорт макромолекул и более крупных частиц из просвета кишечника в области подслизистого слоя

Инвазия

Шигеллы мигрирует в подслизистый слой, в область лимфоидных фолликулов, где подвергается фагоцитозу мононуклеарными фагоцитами. Шигеллы вызывают апоптоз фагоцитов, вновь высвобождаются в подслизистый слой и могут проникать в интактные энтероциты через их базолатеральные мембраны.

Механизм бактериальной инвазии у некоторых Грамотрицательных бактерий

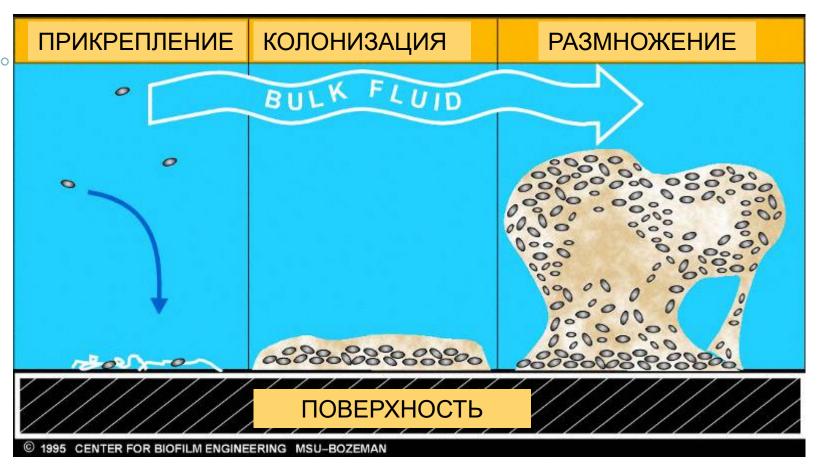
(D) Сканирующая электронная микрофотография энтеропатогенных E. coli, прикрепляющихся к опороподобным клеточным выростам

(E) Окружение Shigella flexneri цитоплазматическими выростами клеток (по типу ряби), во время вторжения бактерий в HeLa эпителиальные клетки.

- С образования биопленок начинается развитие любой инфекции.
- <u>Биопленки</u> тонкий слой микроорганизмов с секретированными ими полимерами, который адгезирован к органической или неорганической поверхности.
- Микроорганизмы, входящие в состав биопленки, существуют в двух формах: фиксированной к поверхности, и планктонной, свободноплавающей, являющейся субстратом распространения инфекции из её первичного локуса.
- В состав поверхностной оболочки и матрикса биопленок входят белки, полисахариды, липиды и нуклеиновые кислоты (ДНК и РНК)

Биопленки

- Это основной фенотип почти всех бактерий в естественных условиях обитания, как во внешней среде, так и в организме человека при патологии.
- Биопленки предоставляют защиту от факторов внешней среды и могут включать микроорганизмы разных царств (например, бактерии и грибы).
- Среди возбудителей, образующих биоленки, наибольшее клиническое значение имеют P.aeruginosa, S.aureus, K. pneumoniae, Coagulasae negative staphylococcus (CNS), Enterococcus spp., Candida spp.


Биопленки

Существование бактерий в виде биопленок усиливает свою защиту от фагоцитоза, ультрафиолетового излучения, вирусов и дегидратации, а также от антибиотиков (выдерживать концентрации антибиотиков в 100-1000 раз больше, чем подавляющие планктонные клетки) и факторов иммунной защиты макроорганизма. Терапевтическое воздействие на биопленки может быть направлено на механизмы первоначальной адгезии бактерий к поверхности

Адгезия микроорганизмов к имплантируемым устройствам.

Ни один из используемых для создания имплантируемых устройств материалов не является биологически инертным. Микроорганизмы связываються с их поверхностями в результате неспецифической адгезии, происходят отложение белков макроорганизма, чаще всего фибрина, и формирование пленки, в составе которой присутствуют молекулы, являющиеся рецепторами для адгезинов микроорганизмов, ОТСУТСТВУЮТ факторы, противодействующие адгезии.

Формирование биопленок

- Колонизация (объекты окружающей среды, клапаны -сердца, зубная эмаль и другое, катетеры,....)
- Резистентость фагоцитозу
- Резистентость к антибиотикам

- <u>Инвαзия</u> проникновение возбудителя через слизистые и соединительнотканные барьеры
- <u>Агрессия –</u> подавление естественной резистентности и адаптивного иммунитета.
- Действуют совместно.
- Инвазивностью и агрессивностью обладают многие поверхностные структуры бактериальной клетки (жгутики, поверхностные белки, липополисахарид клеточнй стенки Грам- бактерий), а также ферменты секретируемые бактериями

- Инвазия распространения микроорганизмов в межклеточных пространствах тканей организма хозяина и проникновения их внутрь его клеток.
- Факторы распространения ряд ферментов продуцируемых бактериальными клетками.
 Большинство из них гидролазы.

- <u>Гиалуронидаза</u> деполимеризует гиалуроновую кислоту, высокополимерное соединение, состоящий из остатков N ацетилглюкозамина и Д глюкуроновой кислоты.
- Происходит разрыв гликозидной связи.
- Гиалуроновая кислота основной компонент соединительной ткани, содержится в клеточных мембранах, межклеточном веществе, снижается вязкость.
- Продуцируют стафилококки, стрептококки, клостридии, холерный вибрион.

- <u>Нейраминидаза</u> гидролизует гликозидные связи в гликопротеидах, ганглиозидах, отщепляет от них остатки сиаловых (нейраминовых кислот), которые состоят из остатков Д-маннозамина и пировиноградной кислоты.
- <u>Сиаловые кислоты</u> входят в состав муцина, секреты слизистых, придает им вязкость, затрудняет продвижение микроорганизма к эпителиоцитам. Находятся на поверхности тканей, лейкоцитов.
- <u>Нейраминидаза</u> разрушает муциновый барьер, снижается активность фагоцитоза

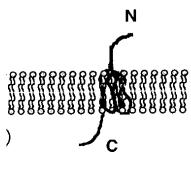
Вырабатывают стафилококки, стрептококки, холерные вибрионы, клостридии.

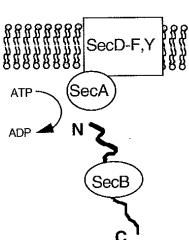
Факторы инвазии и агрессии

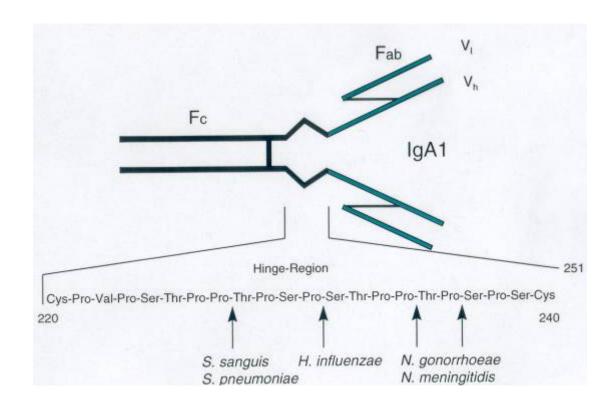
 <u>Лецитиназа</u> – гидролизует лецитин (фосфоглицерид фосфатидилхолин) основной компонент мембран млекопитающих, разрушает липиды клеточных мембран.

Вырабатывают стафилококки, клостридии, бациллы, листерии.

Лецитиназная активность


Протеолитические ферменты.

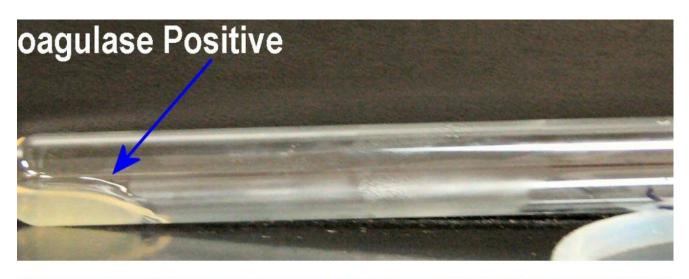

- Основной целью протеолитических ферментов, образуемых бактериями, являются сигнальные и эффекторные молекулы иммунной защиты
- Коагулаза катализирует гидролиз пептидных связей.
- К <u>гидролазам</u> относят фибринолизин
- Этот фермент способен растворять фибрин,
- Способствует генерализации инфекции.
- <u>Протеαзы-</u> эластаза (эластин легочной ткани) желатиназа.
- Коллагеназы коллаген сухожилий (содержит глицин).

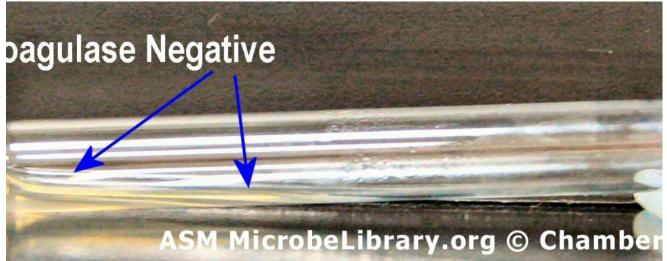

IgA протеазы – гидролиз секреторных иммуноглобулинов

Neisseria meningitidis Haemophilus spp. Streptococcus spp.

сериновая протеаза сериновая протеаза Zinc- протеаза

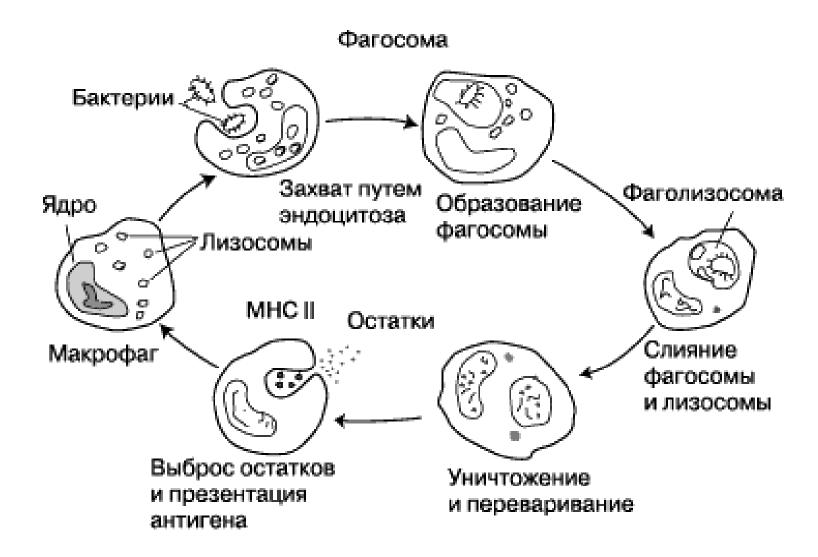
Ферменты.

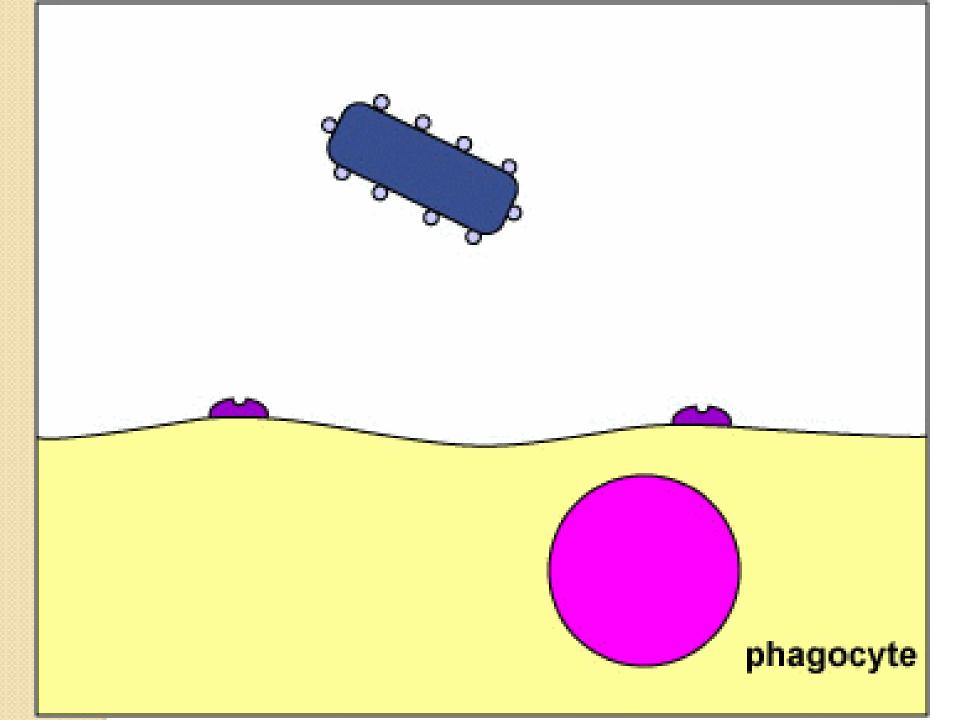

- ДНКаза гидролиз молекул ДНК, разрыв фосфодиэфирных связей распад ДНК и РНК молекул на олигонуклеотиды и мононуклеотиды
- снижается вязкость среды, способствует размножению микроорганизмов. Стафилококки, стрептококки.
- Плазмокоагулаза переводит растворимый фибриноген в фибрин, вызывает свертывание плазмы крови. Вырабатывается в неактивном состоянии.


Вырабатывается золотистыми стафилококками

Тест на ДНКазу.

Тест на плазмокоагулазу

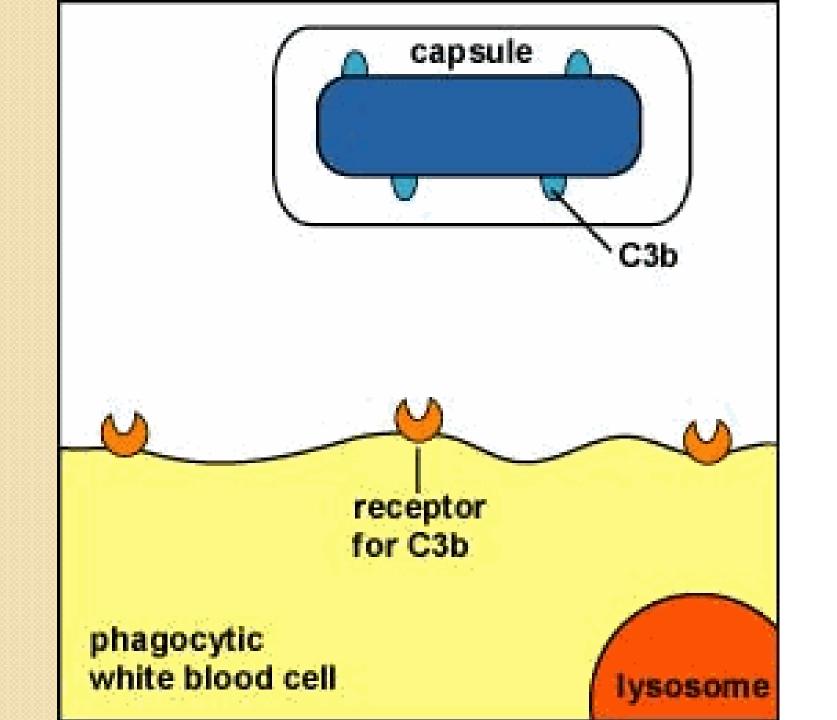


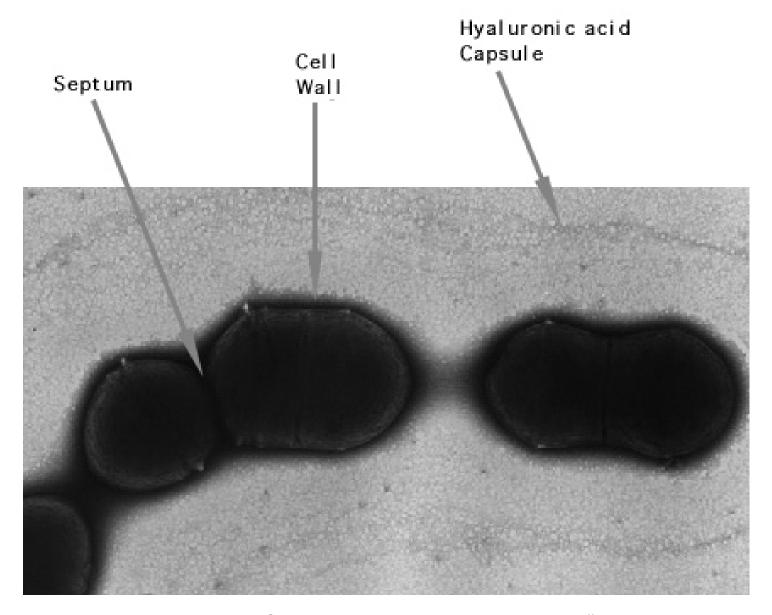

Ферменты

- Уреаза распад мочевины, аммиак вызывает защелачивание среды, прямой токсический эффект.
 Токсичен для центральной нервной системы.
- Подавляет клеточное дыхание. Происходит восстановительное аминирование α- кетоглутаровой кислоты в митохондриях до глутаминовой кислоты, что приводит к удалению α- кетоглутаровой кислоты из цикла трикарбоновых кислот, подавлению клеточного дыхания.
 Продуцируют бруцеллы, хеликобактеры.

Антифагоцитарные факторы

Стадии фагоцитоза

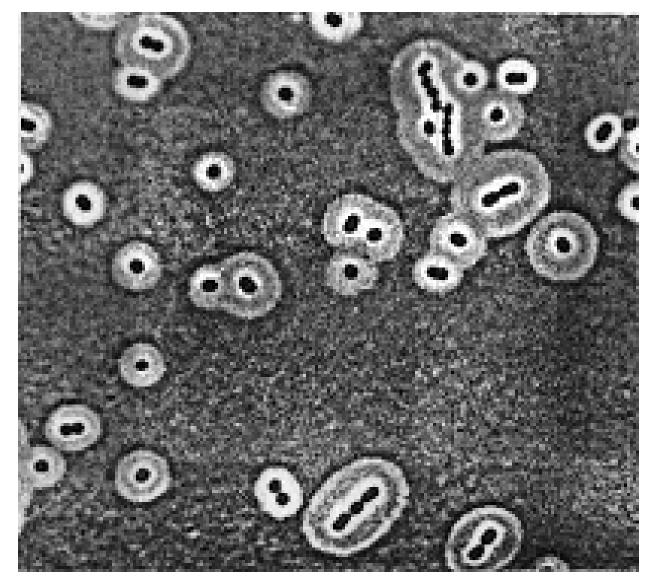


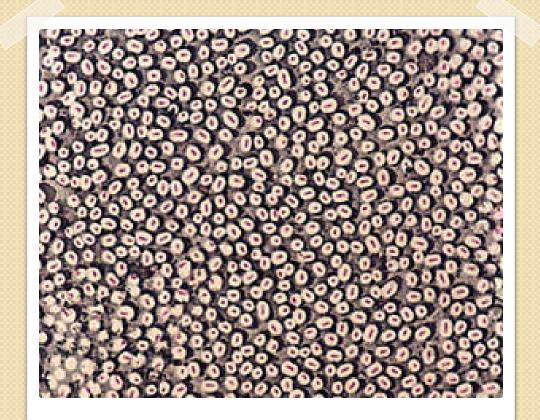

Антифагоцитарные факторы

- Имеют поверхностную локализацию капсулы, капсулоподобные структуры
- Не являются жизненно важными для бактериальной клетки
- Имеют макромолекулярную структуру
- Гидрофильны

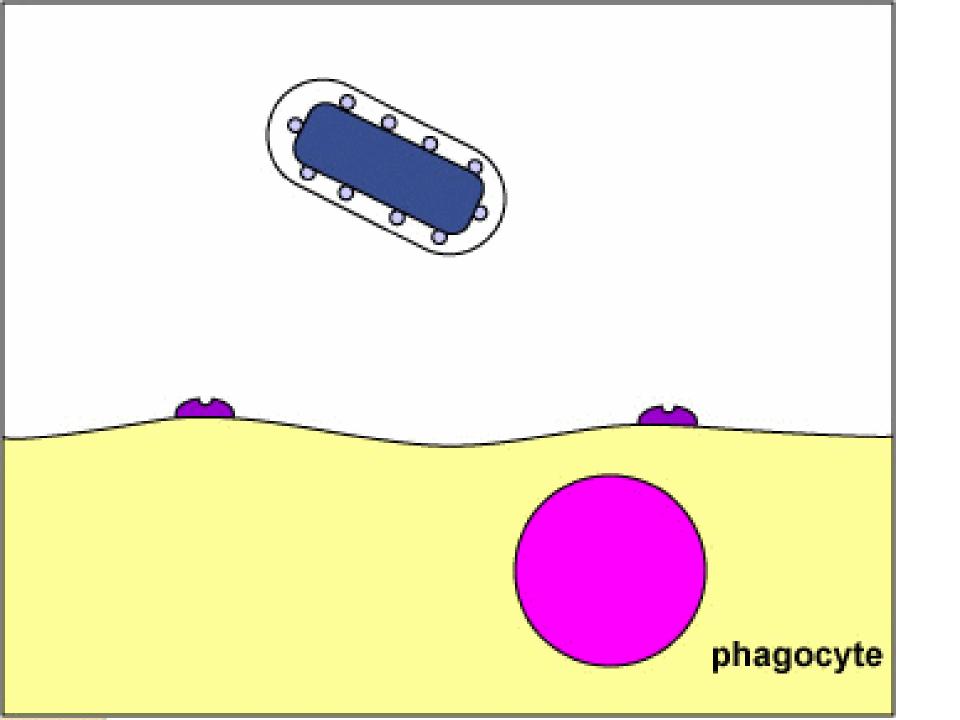
Антифагоцитарные факторы

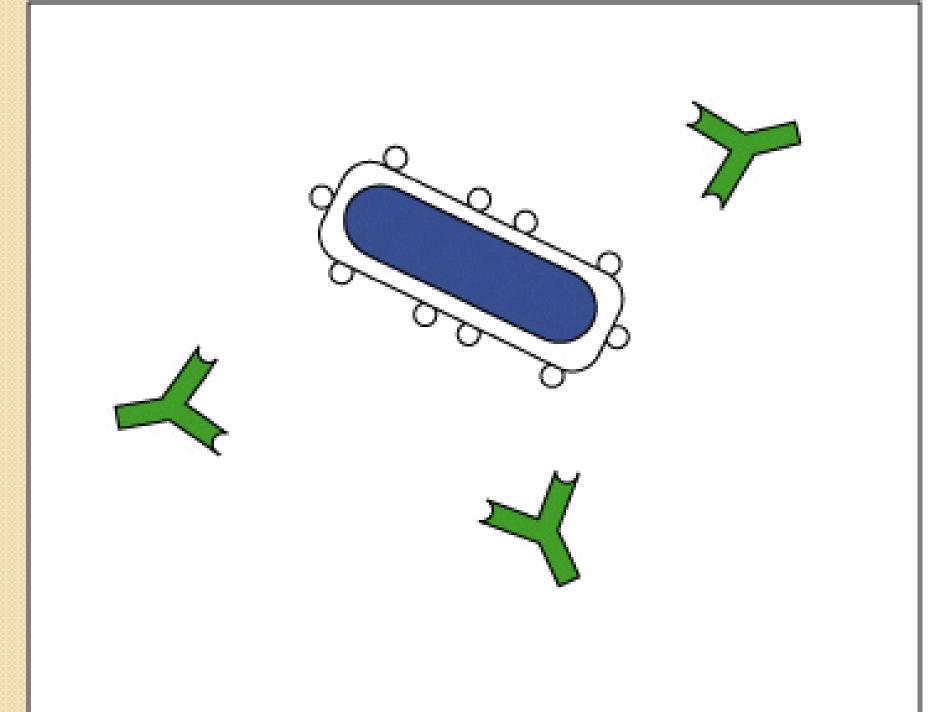
- Защита от фагоцитоза может происходить на различных стадиях процесса:
- На стадии узнавания-поглощения
- Капсулы, капсулоподобный полисахарид
- М-протеин стрептококков, К-антиген грамотрицательных бактерий.
- У Staphylococcus aureus A-протеин и фермент плазмакоагулаза под действием которого вокруг клеток образуется фибриновый чехол, препятствующий распознаванию бактерий фагоцитами.




Негативное контрастирование Streptococcus pyogenes при электронной микроскопии (28,000X). Ореол вокруг цепочки клеток - капсула из гиалуроновой кислоты, которая окружает бактерии с внешней стороны. Также может быть замечена септа между делящейся парой клеток.

Колонии Bacillus anthracis. Рост слизистых или мукоидных бактериальные колонии - обычно свидетельствует о продукции капсул. В случае В. anthracis, капсула состоит из поли-D-глутамина. Капсула - существенный детерминант патогенности бактерий. На ранних стадиях колонизации и инфекции капсула защищает бактерии от антибактериальной активности иммунной и фагоцитарной систем.

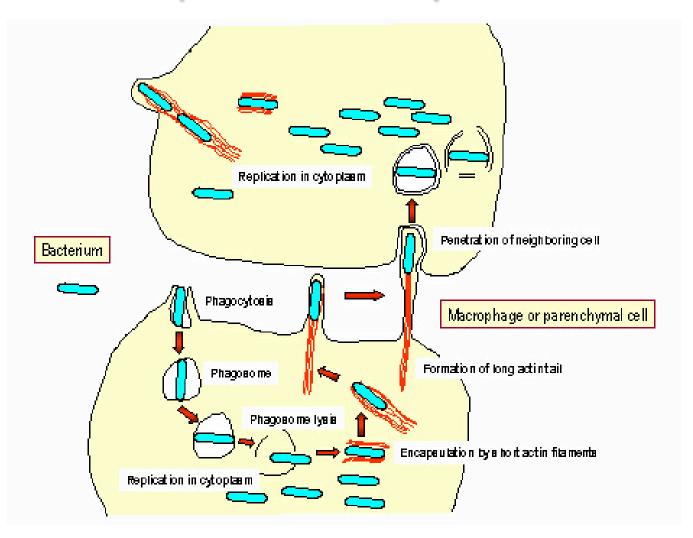

Бактериальные капсулы, контрастированные китайской тушью, рассматриваемые в световой микроскоп. Это - истинная капсула, обособленный слой полисахаридов, вокруг клеток. Иногда бактериальные клетки окружены более беспорядочно полисахаридным матриксом, называемым слизью или биопленкой.



Капсула – метод Бурри-Гинса

Антифагоцитарные факторы

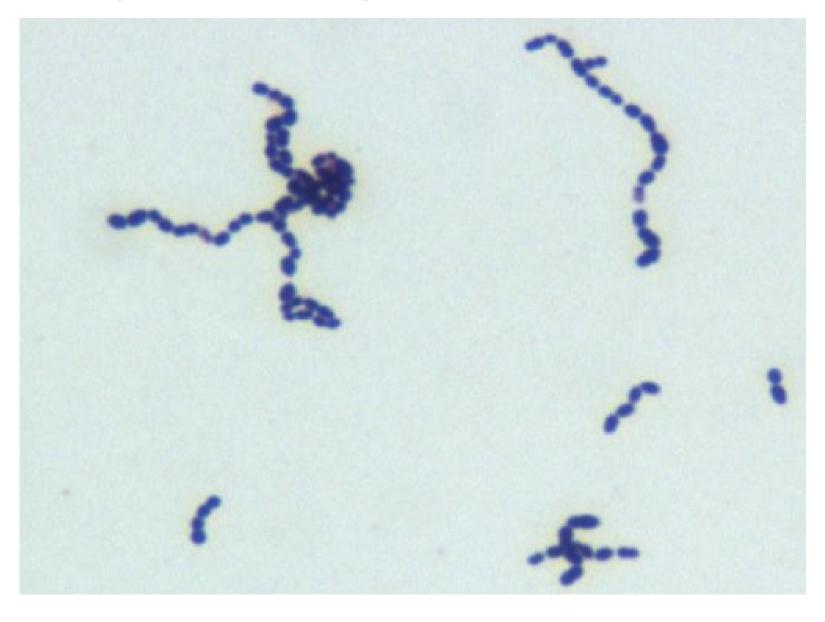
Микроорганизм	Природа капсулы	Субъединицы капсульного полимера
Acetobacter xylinum	Целлюлоза	Глюкоза
Azotobacter vinelandii	Полиуронид	Глюкуроновая и маннуроновая кислоты
Bac. antracis	Полипептид	D-Глутоминовая кислота
Bac. licheniformis		
Отдельные виды из семейства Enterobacteriacceae	Многие типы сложных полисахаридов, колановая кислота	Галактоза, глюкоза, глюкуроновая кислота, ПВК, фукоза и др.
Klebsiella pneumoniae	Сложный полисахарид	Галактоза, галактуроновая кислота, фукоза
Leuconostoc mesenteroides	Глюкан (декстран)	Глюкоза
Pseudomonas aerugenosa	Полиуронид или другие полисахариды	Глюкуроновая. Маннуроновая кислота
Streptococcus haemoliticus Streptococcus pyogenes	Гиалуроновая кислота	N-ацетилглюкозамин, глюкуроновая кислота
Sterptococcus pneumoniae	Многие типы сложных полимеров, например: Тип I Тип II	3-Дезоксигалактоза, галактуроновая кислота,
Sterptococcus salivarius	Фруктан (леван)	глюкоза, глюкуроновая кислота
•	,	Фруктоза полимер М-ацетилманнозамина
N. meningitidis	Полисахарид	полимер N-ацетилманнозамина фосфата (группа А); полимер сиаловой кислоты (группа В и С)
H. influenzae	Полисахарид	Полирибозфосфат



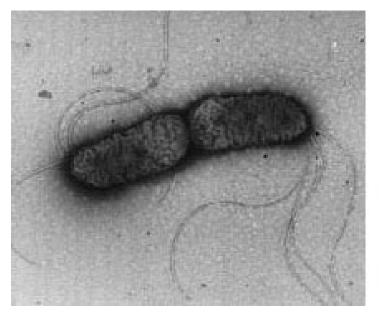
Антифагоцитарные факторы

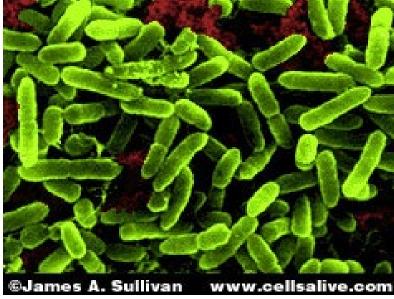
- <u>Выживание микробных клеток после поглощения</u> фагоцитом.
- <u>Препятствие слиянию</u> фагосомы с лизосомой корд-фактор микобактерий
- Подавление процессов закисления в фаголизосоме приводит к нарушению действия лизосомальных ферментов, гены локализованы в составе островка патогенности (Spl2), экспрессируются только после попадания микроорганизма внутрь фагоцитов. Разрушение мембраны фагосомы до слияния с лизосомой листерии, риккетсии. В формировании поры в мембране фагосомы участвуют листериолизин и фосфолипазы.

Незавершенный фагоцитоз


Инвазия нефагоцитирующих клеток

- Активная инвазия клеток, не относящихся к фагоцитам, прежде всего эпителиальных: внутри таких клеток микроорганизмы не подвергаются никаким неблагоприятным воздействиям. Описанную стратегию используют сальмонеллы и шигеллы.
- Стафилококки, пиогенные стрептококки и микобактерии, проникают внутрь фагоцитов, используя рецепторы к комплементу.
 Фагоцитоз, опосредованный этими рецепторами, не приводит к выраженной активации бактерицидных систем фагоцитов.


Уклонение от иммунного ответа


- Вариабельность антигенных свойств
- Антигенная мимикрия
- Образование L-форм
- Экранирование антигенных детерминант с помощью капсул

Streptococcus sp

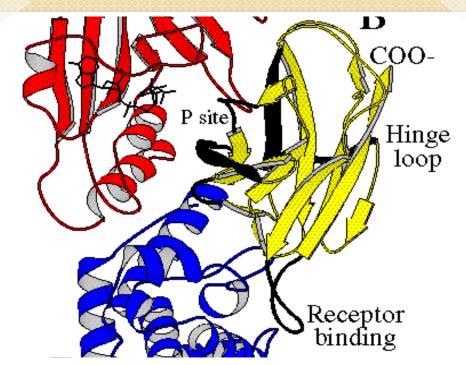
Pseudomonas

Pseudomonas aeruginosa

Бактериальные токсины

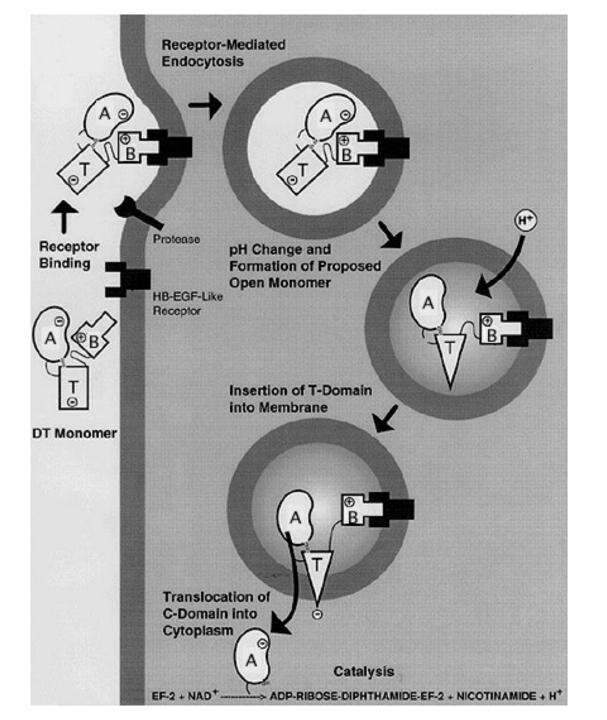
- Оказывают непосредственное патологическое действие
- Экзотоксины (белковые токсины) выделяются преимущественно в окружающую среду.
- Эндотоксины- связаны со структурой бактериальной клетки

Бактериальные токсины


- Характерные свойства белковых токсинов
- Токсичность
- Специфичность
- Термолабильность
- Иммуногенны-образуют анатоксины

Бактериальные токсины

- *Простые* полипептидная цепь
- <u>Сложные</u> несколько связанных полипептидных цепей, соединенных между собой.
- Простые токсины вырабатываются в неактивной форме (протоксин) активируются протеазами.
- Биологический смысл активации образование бифункциональной системы субъединицы А и В.
- В- транспортную и рецепторную функцию
- А- обладает ферментативными свойствами, оказывает специфическое действие


Классификация по механизму действия

- Ингибируют синтез белка- цитотоксины
- Повреждают клеточные мембранымембранотоксины
- Нарушают передачу сигналов функциональные блокаторы
- **Токсины протеазы-** функциональные блокаторы
- Токсины суперантигены иммунотоксины

Дифтерийный токсин – простой. Обладает Рибозил-трансферазной активностью, переносит **ADF**-рибозу На мишень фактор элонгации, трансферазу-2, нарушают элонгацию полипептидных цепей

Механизм действия токсинов Нарушающие синтез белка

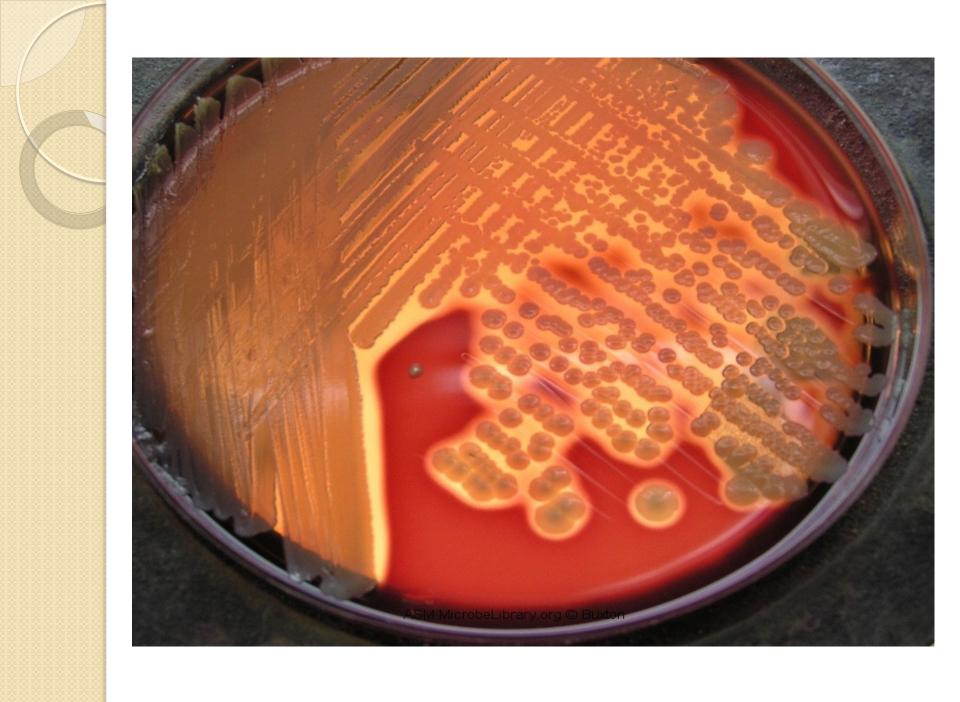
Токсины, нарушающие синтез белка

- Шигα-токсин Субъединица А, обладающая ферментативной активностью, действует как N-гликозидаза, отщепляя единичный адениновый остаток от 28S рибосомальной PHK.
- Вызывает ферментативное повреждение 28s рибосомальной РНК эпителиоцитов толстого кишечника, нарушается функционирование рибосом, факторы элонгации не могут связаться с рибосомами, нарушается синтез белка, клетка погибает.

Порообразующие токсины

Бактериальные токсины, функционирующие посредством вставки в плазматическую мембрану хозяина и формирующие в ней трансмембранные поры, приводящие клетку к лизису.

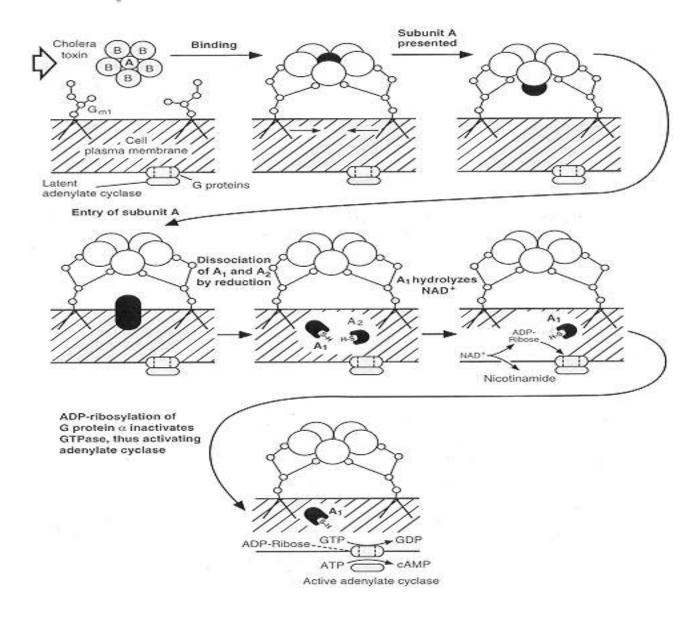
Порообразующие-гемолизины и лейкоцидин. Могут повреждать моноциты, тромбоциты. Альфа токсин стафилококков



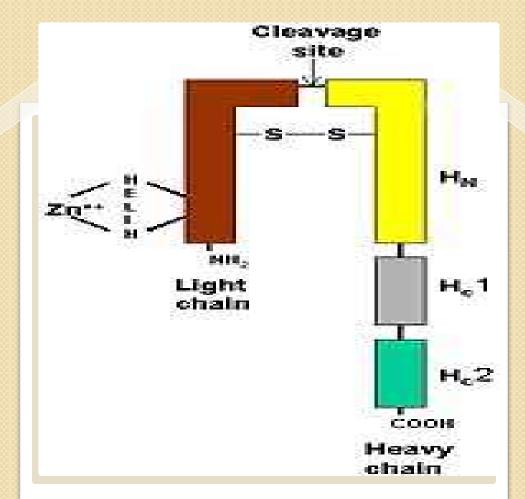
Нарушающие целостность мембран клеток с помощью ферментативного гидролиза фосфолипидов — фосфолипаза **C.** perfringens

Токсины, повреждающие клеточные мембраны

Типы гемолиза на кровяном агаре



Функциональные блокаторы (активаторы путей метаболизма вторичных мессенджеров


- Нарушающие функцию аданилатциклазы –
- Холерный токсин сложный токсин, состоит из субъединицы А и 5 субъединиц В, в виде кольца
- А1 обладает гликогидролазной и рибозилтрансферазной активностью.
- ADF-рибоза переносится на ГТФ
- Активируется аденилатциклаза, приводит к избыточному накоплению цАМФ
- Нарушается транспорт электролитов
- Избыток в кишечнике приводит к повышению осмотического давления в кишечнике, из клетки секретируется вода

Холерный токсин

Нейротоксины *C.botulinum* (BoNT серотипов A vG) и *C.tetani* -протеазы

Нейротоксины синтезируются в виде неактивных полипептидов с молекулярной массой до 150 кДа. Каждая активная молекула нейротоксина состоит из тяжелой (100 кДа) и легкой (50 кДа) цепочек, соединенных единичной бисульфидной связью. Тяжелая цепь содержит два домена: участок, ответственный за транслокацию токсина в Nконцевой части, и область на С-конце, регулирующую связывание токсина с клеткой. Легкие цепочки содержат цинксвязывающие последовательности, для осуществления протеазной активности токсина, зависящей от ионов цинка.

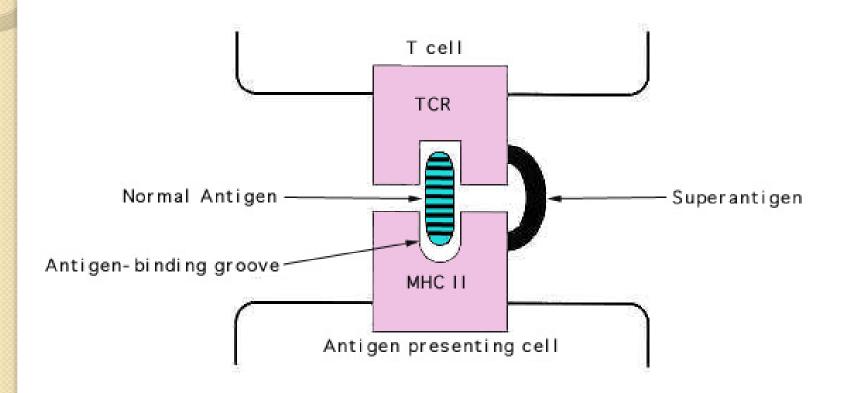
Тетаноспазмин – столбнячный токсин, простой токсин

Для активации необходимо протеолитическое расщепление на легкую и тяжелые цепи

Клеточные мишени группа белков, необходимых для соединения синаптических пузырьков с пресинаптическими плазматическими мембранами с последующим высвобождением нейромедиаторов

Нейротоксин

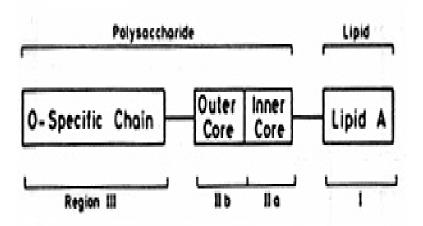
- Столбнячный токсин поражает два вида нейронов. Он связывается с рецепторами пресинаптической мембраны моторных нейронов, затем с помощью обратного везикулярного транспорта перемещается в спинной мозг, где внедряется в тормозные и вставочные нейроны.
- Расщепление везикулоассоциированного мембранного протеина и синаптобревина в этих нейронах приводит к нарушению высвобождению глицина и гаммааминомаслянойкислоты, которые способны прекращать мышечное сокращение


Протеолитические токсины нейротоксины

- Обладает протеазной активностью, разрушает белок синаптобревин, блокирует систему торможения –судороги
- Ботулотоксин действует как эндопротеаза, разрушает белки-мишени, нарушает секрецию ацетилхолина, блокада мотонейронов, вялые параличи.

Токсины-суперантигены, активаторы иммунного ответа

- Иммуностимулирующий потенциал токсинов является следствием их способности связывать различные участки белков главного комплекса гистосовместимости II типа, экспрессированных на поверхности антигенпрезентирующих клеток и Убета-элементы на Т-клеточном рецепторе.
- Связывание TSST-1 с Vбета2 приводит к массивной пролиферации более 20% периферических Т-клеток.
- Следствием Т-клеточной экспансии является массивное высвобождение цитокинов
- Цитокины вызывают гипотензию, высокую температуру и диффузные эритематозные высыпания


Токсины-суперантигены

Эндотоксин

Сложный липополисахаридный комплекс, содержится в клеточной стенке грамотрицательных бактерий и выделяется в окружающую среду при лизисе бактерий. ЛПС включает 3 ковалентно-связанных компонента:

Эндотоксины

- Липид А
- Центральный олигосахарид
- О-антиген

Эндотоксины

Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью.