МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.И.ПИРОГОВА» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России (Пироговский Университет)

ПРОГРАММА

вступительного испытания в форме собеседования

«Химия»

І. Область применения и нормативные ссылки

Программа собеседования разработана для поступающих в ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России (Пироговский Университет) на обучение по программам высшего образования: программам бакалавриата и программам специалитета на основе требований Федерального государственного образовательного стандарта среднего (полного) общего образования (приказ Минобрнауки России от 17 мая 2012 г. № 413).

II. Программа собеседования

1. Теоретическая химия

1.1. Основные понятия и законы химии. Предмет химии. Основные положения атомномолекулярного учения

Относительная атомная и относительная молекулярная массы. Количество вещества. Моль. Молярная масса. Закон Авогадро и следствия из него. Молярный объём газа. Нормальные условия. Абсолютная и относительная плотности газа. Объёмные соотношения газов при химических реакциях.

1.2. Строение атома. Периодический закон Д.И.Менделеева. Химическая связь

Атом. Модели строения атома. Ядро и нуклоны. Нуклиды и изотопы. Электрон. Строение электронных оболочек атомов. Энергетические уровни и подуровни, атомные орбитали. Электронные конфигурации атомов. Валентные электроны. Основное и возбужденное состояния атомов.

Основные закономерности размещения электронов в атомах малых и больших периодов, s-, p-, d- элементы.

Периодический закон. Причины периодичности свойств элементов. Периоды, группы и подгруппы в периодической системе. Связь свойств элементов и их соединений с положением в периодической системе.

Молекулы и химическая связь. Ковалентная связь, ее разновидности и механизмы образования. Характеристики ковалентной связи. Электроотрицательность. Степень окисления и валентность. Ионная связь. Металлическая связь. Водородная связь. Вещества молекулярного и немолекулярного строения.

1.3. Физико-химические закономерности протекания химических реакций

Классификация химических реакций в неорганической и органической химии по различным признакам: по изменению степеней окисления атомов, по числу и составу исходных и образующихся веществ, по типу разрыва связей, по тепловому эффекту, по признаку обратимости.

Энергетика химических превращений. Тепловой эффект химической реакции. Термохимические уравнения реакций.

Скорость химических реакций. Гомогенные и гетерогенные реакции. Зависимость скорости химической реакции от различных факторов. Обратимость химических реакций. Химическое равновесие. Константа равновесия. Смещение равновесия под действием различных факторов. Принцип Ле-Шателье.

1.4. Растворы

Механизм образования растворов и их классификация. Чистые вещества и смеси. Способы выражения состава растворов: массовая доля растворенного вещества. Растворы электролитов. Теория электролитической диссоциации. Механизм электролитической диссоциации веществ с ионной и ковалентной полярной связями. Диссоциация кислот, оснований и солей. Сильные и слабые электролиты.

Химические свойства кислот, оснований и солей в свете теории электролитической диссоциации.

Реакции ионного обмена в водных растворах электролитов, условия их необратимости. Кислотно-основные взаимодействия в растворах. Амфотерность.

1.5. Окислительно-восстановительные процессы

Степень окисления. Важнейшие окислители и восстановители. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Окислительно-восстановительные реакции в растворах. Электролиз растворов и расплавов.

2. Химия элементов

2.1. Классификация неорганических соединений

Оксиды, классификация оксидов. Способы получения оксидов. Их физические и химические свойства. Номенклатура оксидов.

Основания, их классификация, способы получения и химические свойства. Амфотерные гидроксиды. Номенклатура оснований.

Кислоты, их классификация, способы получения, физические и химические свойства. Номенклатура кислот.

Соли, их классификация, способы получения и химические свойства. Номенклатура солей. Гидролиз солей.

2.2. Металлы. Общая характеристика

Положение металлов в периодической системе химических элементов Д.И. Менделеева. Особенности электронного строения их атомов. Общая характеристика металлов главных и побочных подгрупп периодической системы, их оксидов и гидроксидов: кислотно-основные и окислительно-восстановительные свойства. Общие способы получения металлов. Понятие о металлургии. Сплавы.

2.2.1. Металлы главных подгрупп I и II групп периодической системы (s- элементы)

Строение атомов. Физические свойства. Химические свойства: взаимодействие с неметаллами (галогенами, кислородом, серой, азотом, фосфором, углеродом, водородом), водой, растворами кислот. Соединения щелочных и щелочноземельных металлов: оксиды, пероксиды, гидроксиды, гидриды, нитриды, фосфиды и карбиды. Их химические свойства.

2.2.2. Алюминий

Строение атома. Физические свойства. Химические свойства алюминия: взаимодействие с неметаллами (галогенами, кислородом, серой, азотом и углеродом), оксидами, разбавленными и концентрированными растворами кислот (соляной, серной, азотной), растворами щелочей и карбонатами щелочных металлов, водой. Оксид и гидроксид алюминия, их амфотерные свойства.

2.2.3. Металлы побочных подгрупп (*d*-элементы)

Особенности строения их атомов. Общая характеристика d-элементов.

2.2.4. Железо

Строение атома. Характерные ионы и степени окисления железа. Физические свойства. Химические свойства: взаимодействие с неметаллами (галогенами, кислородом, серой), разбавленными и концентрированными растворами кислот (соляной, серной, азотной). Оксид и гидроксид железа (II), соли железа (II), их восстановительные свойства. Оксид и гидроксид железа (III), их амфотерные свойства.

2.2.5. Марганец

Строение атома. Характерные ионы, степени окисления марганца и соответствующие оксиды, гидроксиды и соли. Взаимодействие марганца с кислотами. Изменение кислотно-основных и окислительно-восстановительных свойств соединений марганца с изменением степени окисления марганца. Оксид марганца (IV), его окислительные свойства в кислой среде. Манганаты и перманганаты, их окислительные свойства.

2.2.6. Хром

Строение атома. Характерные ионы, степени окисления хрома и соответствующие оксиды, гидроксиды и соли. Взаимодействие хрома с кислотами. Изменение кислотно-основных и окислительно-восстановительных свойств соединений хрома в зависимости от степени окисления хрома. Оксид и гидроксид хрома (III), их амфотерные свойства. Хроматы и дихроматы, их взаимопревращения в зависимости от кислотности среды. Окислительные свойства соединений хрома (VI).

2.2.7. Цинк

Строение атома. Химические свойства: взаимодействие цинка с неметаллами (хлором, кислородом, серой), с водой, с разбавленными и концентрированными растворами кислот (соляной, серной, азотной), со щелочами. Оксид и гидроксид цинка, их амфотерные свойства.

2.2.8. Медь и серебро

Строение атома. Характерные степени окисления. Химические свойства: взаимодействие с неметаллами (галогенами, кислородом, серой), кислотами.

2.3. Неметаллы

Положение неметаллов в периодической системе Д.И. Менделеева.

2.3.1. Водород

Изотопы водорода. Соединения водорода с металлами и неметаллами. Получение водорода.

2.3.2. Главная подгруппа VII группы периодической системы. Галогены

Строение атомов. Строение молекул. Физические свойства галогенов. Химические свойства: взаимодействие с водородом, металлами, неметаллами (S, C, Si, P), со сложными веществами (кислотами, солями, водой, щелочами, органическими соединениями).

Галогеноводороды. Строение молекул. Водородная связь во фтороводороде. Физические свойства. Сравнение силы галогеноводородных кислот. Химические свойства: общие свойства кислот, восстановительные свойства, взаимодействие фтороводородной кислоты с оксидом кремния (IV). Кислородные соединения хлора.

2.3.3. Подгруппа кислорода

Строение атомов. Физические свойства, аллотропия.

2.3.4. Кислород

Химические свойства: взаимодействие с металлами, неметаллами, сложными веществами - восстановителями (оксидами, гидроксидами, кислотами, солями, органическими соединениями). Получение кислорода в промышленности и в лаборатории.

Вода. Строение молекулы. Водородная связь и её влияние на свойства воды.

Кислотно-основные и окислительно-восстановительные свойства воды. Пероксид водорода. Окислительно-восстановительные свойства пероксида водорода (окисление нитрита натрия, йодоводорода; восстановление перманганата калия в кислой среде, оксида серебра).

2.3.5. Cepa

Химические свойства: взаимодействие с металлами, кислородом, хлором и водородом. Сероводород. Строение молекулы. Физические свойства. Получение сероводорода. Кислотные свойства водного раствора сероводорода - сероводородной кислоты. Окислительновосстановительные свойства сероводорода и сероводородной кислоты (взаимодействие с металлами, кислородом, бромом (хлором), пероксидом водорода, оксидом серы(IV) и сернистой кислотой). Сульфиды, гидролиз сульфидов.

Оксид серы(IV). Строение молекулы. Физические свойства. Получение оксида серы(IV). Кислотные свойства водного раствора оксида серы(IV) - сернистой кислоты. Окислительновосстановительные свойства оксида серы(IV) и сернистой кислоты (взаимодействие с металлами, кислородом, бромом (хлором), пероксидом водорода, сероводородом). Оксид серы(VI). Строение молекулы. Физические свойства. Получение оксида серы(VI). Химические свойства оксида серы(VI): взаимодействие с водой, восстановителями (серой, углеродом, йодидом калия), термическое разложение.

Серная кислота. Строение молекулы. Получение серной кислоты (химизм).

Химические свойства разбавленной серной кислоты. Химические свойства концентрированной серной кислоты.

2.3.6. Подгруппа азота

Строение атомов. Общая характеристика элементов.

2.3.7. Азот

Строение молекулы. Химические свойства: окислительные взаимодействия с металлами, водородом; восстановительные взаимодействия с кислородом. Строение молекулы, её полярность. Физические свойства.

Получение аммиака. Химические свойства аммиака. Основные свойства: взаимодействие с водой и кислотами. Восстановительные свойства: взаимодействие с кислородом, галогенами, пероксидом водорода, оксидами тяжёлых металлов. Строение иона аммония. Кислотные свойства солей аммония: взаимодействие с основаниями, основными оксидами, водой (гидролиз). Восстановительные свойства солей аммония.

Оксиды азота. Получение. Физические свойства. Химические свойства. Оксид азота(II): взаимодействие с восстановителями - водородом, аммиаком; взаимодействие с окислителем - кислородом. Оксид азота(IV): взаимодействие с восстановителями - водородом, магнием, фосфором; взаимодействие с окислителем - кислородом; взаимодействие с водой и

щелочами (реакция диспропорционирования).

Азотистая кислоты. Кислотные свойства. Неустойчивость азотистой кислоты. Соли азотистой кислоты - нитриты. Термическое разложение нитрита аммония. Азотная кислота. Строение молекулы. Получение азотной кислоты (химизм). Химические свойства. Кислотные свойства. Взаимодействие с восстановителями - металлами, неметаллами, сложными веществами. Влияние восстановительной способности металлов и концентрации кислоты на глубину её восстановления. Соли азотной кислоты - нитраты. Термическое разложение нитратов.

2.3.8. Фосфор

Физические свойства. Аллотропия. Химические свойства фосфора: взаимодействие с восстановителями - металлами, водородом; взаимодействие с окислителями - кислородом, хлором, оксидами азота(II) и (IV), азотной и концентрированной серной кислотами.

Оксиды фосфора(III) и (V), фосфористая и ортофосфорная кислоты. Кислотные свойства. Фосфин.

2.3.9. Подгруппа углерода

Строение атомов. Физические свойства. Аллотропия.

2.3.10. Углерод

Химические свойства. Взаимодействие с металлами, водородом; взаимодействие с окислителями: кислородом, оксидом углерода(IV), оксидами тяжёлых металлов, азотной и концентрированной серной кислотами. Оксид углерода(II), восстановительные свойства.

Оксид углерода(IV). Физические свойства. Получение оксида углерода(IV). Химические свойства: взаимодействие с восстановителями - углеродом, магнием. Угольная кислота. Кислотные свойства. Соли угольной кислоты - карбонаты и гидрокарбонаты, их взаимопревращения.

2.3.11. Кремний

Получение. Химические свойства: взаимодействие с окислителями - фтором, кислородом, галогенами; взаимодействие с водными растворами щелочей.

Оксид кремния(IV). Кремниевая кислота, силикаты.

3. Органическая химия

3.1. Введение

Теория строения органических соединений. Углеродный скелет. Радикал. Функциональная группа. Гомологи и гомологический ряд. Структурная и пространственная изомерия. Строение электронных оболочек атома углерода. Гибридизация орбиталей (sp, sp^2, sp^3) . Типы связей в молекулах органических веществ и способы их разрыва. Типы реакций в органической химии. Ионный и радикальный механизмы реакций. Химическая связь в соединениях углерода. Ионная, ковалентная и водородная связи. Электроотрицательность. Степень окисления и валентность.

3.2. Алканы

Метан, его структурная формула, тетраэдрическое строение молекулы метана, sp^3 -гибридизация, характер химических связей. Гомологический ряд метана, гомологическая разность. Пространственное строение предельных углеводородов. Номенклатура и изомерия. Физические свойства алканов. Природные источники.

Химические свойства алканов: реакции замещения (галогенирование, нитрование); термического разложения (крекинг, пиролиз); изомеризации; окисления (горение, мягкое окисление - получение спиртов, альдегидов, кетонов и карбоновых кислот).

Радикальный механизм реакций замещения. Избирательность взаимодействия галогенов с алканами. Применение предельных углеводородов. Метан. Получение синтез-газа и водорода из метана.

3.3. Галогенопроизводные алканов

Химические свойства галогенопроизводных алканов: взаимодействие галогенопроизводных алканов с металлами (реакция Вюрца).

3.4. Алкены

Этен (этилен), его структурная формула, двойная связь, σ - и π -связи, sp^2 - гибридизация. Гомологический ряд этилена. Физические свойства. Изомерия: изомерия цепи, изомерия положения двойной связи, quc-, mpanc-изомерия. Номенклатура алкенов.

Химические свойства алкенов. Наиболее характерные реакции этиленовых углеводородов - реакции электрофильного присоединения: галогенирование, присоединение галогеноводородов, присоединение серной кислоты, гидратация. Механизм реакций. Правило Марковникова. Реакции полимеризации. Реакции окисления (окислители: кислород, перманганат калия в щелочной и кислой средах, азотная кислота). Получение алкенов: дегидрирование алканов, дегидрогалогенирование дегидратация спиртов, алкилгалогенидов, дегалогенирование дигалогеналканов, гидрирование алкинов.

3.5. Алкадиены

Химическое и электронное строение алкадиенов с сопряженными связями. Номенклатура и изомерия алкадиенов. Химические свойства: присоединение галогенов, галогеноводородов, водорода. Полимеризация. Особенности электрофильного присоединения к системам с сопряжёнными двойными связями. Получение 1,3-бутадиена: из этанола (метод С.В. Лебедева), из бутана и бутенов. Получение изопрена. Природный каучук, его строение и свойства. Синтетический каучук.

3.6. Циклоалканы

Строение, гомологический ряд, номенклатура, изомерия. Нахождение в природе.

Химические свойства: наиболее характерные для трёх- и четырёхчленных циклов реакции присоединения; галогенирование, присоединение галогеноводородов, гидратация, гидрирование. Наиболее характерные реакции замещения (радикального) для углеводородов, содержащих циклы с пятью и более атомами углеводорода: галогенирование, нитрование.

3.7. Алкины

Этин (ацетилен), его структурная формула, тройная связь, *sp*- гибридизация.

Гомологический ряд этина. Физические свойства. Изомерия: изомерия цепи, изомерия положения тройной связи. Номенклатура алкинов. Химические свойства алкинов.

Реакции электрофильного присоединения: галогенирование, присоединение водорода, галогеноводородов, гидратация. Реакции полимеризации (образование бензола, винилацетилена). Реакции замещения, кислотный характер атома водорода у *sp*-гибридизованного атома углерода. Реакции окисления (окислители: кислород, перманганат калия). Получение алкинов: термическое разложение (крекинг) углеводородов, разложение карбида кальция водой или кислотой, дегидрогалогенирование соответствующих галогензамещенных соединений, дегалогенирование полигалогензамещенных соединений.

3.8. Ароматические углеводороды. Арены

Химическое и электронное строение молекулы бензола. Бензол - циклическая сопряженная система. Энергия сопряжения. Гомологический ряд бензола, номенклатура, изомерия. Химические свойства бензола: Реакции электрофильного замещения (нитрование, сульфирование, галогенирование, алкилирование - галогеноалканами, алкенами; ацилирование). Реакции присоединения (водорода, галогенов). Механизм реакции электрофильного замещения. Химические свойства гомологов бензола. Понятие о взаимном влиянии атомов в ароматических углеводородах. Правила ориентации в бензольном кольце. Реакции окисления. Стирол - одно из важнейших производных бензола.

Получение ароматических углеводородов: из нефти и продуктов её переработки, из каменноугольной смолы, дегидроциклизация алканов, алкилирование с галогенопроизводными алканов, алкенами и спиртами. Применение ароматических углеводородов. Взаимосвязь насыщенных, ненасыщенных и ароматических углеводородов.

3.9. Природные источники углеводородов и их переработка

Природные источники углеводородов: нефть, природный и попутный нефтяной газы, уголь. Нефть, состав и свойства. Переработка нефти: перегонка нефти, термический и каталитический крекинг.

3.10. Спирты

Насыщенные одноатомные спирты. Строение насыщенных одноатомных спиртов. Функциональная группа, ее электронное строение. Первичные, вторичные и третичные спирты. Номенклатура спиртов и изомерия.

Водородная связь и ее влияние на свойства спиртов. Химические свойства спиртов.

Реакции, протекающие с разрывом связи О-Н: образование алкоксидов металлов (кислотные свойства), образование сложных эфиров, образование полуацеталей и ацеталей.

Реакции, протекающие с разрывом связи C-OH: замещение гидроксильной группы на галоген, дегидратация внутримолекулярная (образование ненасыщенных соединений) и межмолекулярная (образование простых эфиров). Реакции окисления и восстановления.

Механизм реакции нуклеофильного замещения.

Получение спиртов: гидратация алкенов, брожение углеводов, восстановление альдегидов и кетонов, гидролиз галогенопроизводных, гидролиз сложных эфиров, получение из оксида углерода (II) и водорода.

Многоатомные спирты. Строение многоатомных спиртов. Номенклатура и изомерия. Химические свойства и получение этиленгликоля и глицерина. Сравнительная характеристика химических свойств одноатомных и многоатомных спиртов (кислотные свойства). Применение спиртов.

3.11. Фенолы

Фенолы. Строение фенолов. Номенклатура и изомерия. Химические свойства фенола: кислотные свойства, реакции электрофильного замещения в бензольном кольце (нитрование, сульфирование, действие бромной воды), реакции восстановления.

Взаимное влияние атомов в молекуле фенола. Получение и применение фенола.

3.12. Альдегиды и кетоны

Строение альдегидов и кетонов. Карбонильная группа, её строение. Номенклатура и изомерия

альдегидов и кетонов. Физические свойства.

Химические свойства: реакции окисления и восстановления, реакции присоединения спиртов (образование ацеталей), галогенирование. Получение альдегидов и кетонов: окисление спиртов, гидратация алкинов, разложение солей органических кислот, окисление алканов, окисление этилена (получение этаналя). Применение метаналя и этаналя. Генетическая связь альдегидов и кетонов с другими классами органических соединений

3.13. Карбоновые кислоты

Классификация карбоновых кислот. Насыщенные одноосновные и ароматические карбоновые кислоты. Номенклатура. Гомологический ряд насыщенных одноосновных карбоновых кислот. Отдельные представители предельных одноосновных и ароматических кислот - муравьиная, уксусная, пальмитиновая, стеариновая, бензойная кислоты. Щавелевая кислота как представитель двухосновных карбоновых кислот. Изомерия.

Одноосновные ненасыщенные карбоновые кислоты. Номенклатура и изомерия. Отдельные представители одноосновных насыщенных карбоновых кислот - акриловая, олеиновая, линолевая, линоленовая кислоты. Физические свойства карбоновых кислот.

Карбоксильная группа, её строение. Взаимное влияние карбоксильной группы и углеводородного радикала. Химические свойства карбоновых кислот.

Свойства, обусловленные карбоксильной группой: электролитическая диссоциация, взаимодействие с металлами, основными и амфотерными оксидами, основаниями, солями, образование ангидридов, взаимодействие со спиртами, аммиаком, реакции окисления и восстановления. Свойства, обусловленные углеводородным радикалом: реакции замещения, присоединения, окисления и восстановления.

Получение карбоновых кислот: окисление алканов, алкенов, ароматических углеводородов, спиртов, альдегидов и кетонов; гидролиз тригалогенопроизводных; гидролиз сложных эфиров; декарбоксилирование двухосновных кислот.

Генетическая связь карбоновых кислот с другими классами органических соединений. Применение карбоновых кислот.

3.14. Сложные эфиры. Жиры

Сложные эфиры неорганических и органических кислот. Строение сложных эфиров. Номенклатура. Физические свойства. Реакция этерификации. Обратимость реакции этерификации. Химические свойства сложных эфиров: гидролиз в кислой и щелочной средах. Жиры в природе, их строение, физические свойства.

Химические свойства: гидролиз жиров в кислой и щелочной средах, гидрогенизация жиров. Применение жиров. Понятие о синтетических моющих средствах.

3.15. Углеводы

Классификация углеводов. Моносахариды. Строение моносахаридов. Открытые и циклические формы моносахаридов. Физические свойства и нахождение в природе. Отдельные представители моносахаридов - глюкоза, фруктоза, рибоза, дезоксирибоза. Химические свойства моносахаридов. Свойства, обусловленные наличием гидроксильных групп. Свойства, обусловленные наличием карбонильной группы. Дисахариды. Сахароза и фруктоза. Строение молекулы. Физические свойства и нахождение в природе. Химические свойства: гидролиз; реакции, обусловленные наличием гидроксильных групп.

Полисахариды. Крахмал. Строение крахмала. Химические свойства крахмала: гидролиз, реакция

с йодом, реакции, обусловленные наличием гидроксильных групп. Целлюлоза. Строение целлюлозы. Химические свойства целлюлозы: гидролиз; реакции, обусловленные наличием гидроксильных групп. Применение полисахаридов и их производных.

3.16. Азотсодержащие органические соединения

Амины. Строение аминов. Аминогруппа. Номенклатура и изомерия. Физические свойства. Химические свойства аминов: взаимодействие с водой и кислотами (основность аминов), взаимодействие с азотистой кислотой, горение. Анилин, как представитель ароматических аминов. Получение анилина из нитробензола. Химические свойства анилина: реакции, обусловленные наличием аминогруппы, реакции в бензольном кольце.

3.17. Аминокислоты

Строение α-аминокислот. Номенклатура и изомерия. Физические свойства. Химические свойства α-аминокислот: реакции, связанные с наличием аминогруппы; реакции, связанные с наличием карбоксильной группы. Особенности химических свойств аминокислот, обусловленные сочетанием карбоксильной и аминогруппы. Образование дипептидов.

3.18. Белки как биополимеры

Основные α -аминокислоты, образующие белки (глицин, аланин, валин, фенилаланин, тирозин, серин, цистеин, глутаминовая кислота, лизин, триптофан). Первичная, вторичная, третичная и четвертичная структура белков. Химические свойства белков: гидролиз, денатурация, цветные реакции белков.

3.19. Высокомолекулярные соединения

Общие понятия: мономер, полимер, структурное звено, степень полимеризации. Реакции полимеризации и поликонденсации. Полимеры, получаемые реакцией полимеризации (полиэтилен, полипропилен, поливинилхлорид, полиметиметакрилат). Каучуки. Природный и синтетические каучуки, вулканизация каучуков. Полимеры, получаемые по реакции поликонденсации. Фенолформальдегидные смолы.

Ш. Регламент прохождения вступительного испытания в форме собеседования

- Абитуриент обязан явиться для прохождения вступительного испытания в назначенный Приемной комиссией день, время и место проведения;
- В ходе собеседования экзаменатор(-ы) ведет(-ут) протокол собеседования, где отражают тематики (вопросы), представленные для собеседования, параметры изложения учебного материала абитуриентом, дополнительные, уточняющие и наводящие вопросы, задаваемые абитуриенту, а также его ответы на них, баллы, выставленные за тематики (вопросы) собеседования и другую информацию, относящуюся к собеседованию;
- Абитуриент получает список тематик (вопросов) для проведения собеседования методом случайного выбора из банка тематик (вопросов) и лист для подготовки к собеседованию;
- На листе для подготовки к собеседованию и протоколе собеседования указывается время получения тематик (вопросов) для собеседования. Абитуриент своей подписью заверяет

правильность указания времени. С указанного времени начинает исчисляться время на подготовку к вступительному испытанию;

- На подготовку к вступительному испытанию отводится 1 (один) астрономический час (60 минут), по истечении которого абитуриент приступает к собеседованию с экзаменатором(-ами);
- По ходу собеседования экзаменатор(-ы) могут задавать абитуриенту уточняющие, наводящие и дополнительные вопросы, просить изобразить схему, рисунок, решить задачу и т.п.;
- В ходе собеседования по каждой тематике (вопросу) абитуриенту выставляется балл. По итогам собеседования все баллы суммируются.
- Итоговый результат собеседования доводится до сведения абитуриента под его подпись в протоколе собеседования.

IV. Структура собеседования

Вопрос 1

- 1. Классификация химических реакций. Реакции соединения, разложения, замещения и обмена. Экзотермические и эндотермические реакции.
- 2. Окислительно-восстановительные реакции. Окисление, восстановление, окислители и восстановители.
- 3. Скорость химической реакции. Зависимость скорости химической реакции от различных факторов. Катализ.
- 4. Химическое равновесие. Влияние различных факторов (давления, температуры, концентрации) на положение химического равновесия.
- 5. Электролитическая диссоциация. Сильные и слабые электролиты. Степень диссоциации. Химические реакции в растворах электролитов.
- 6. Оксиды кислотные, основные и амфотерные. Их получение и химические свойства.
- 7. Основания. Их получение и химические свойства. Амфотерные гидроксиды.
- 8. Кислоты. Их классификация, получение и свойства.
- 9. Соли. Их классификация, получение и свойства.
- 10. Натрий и его соединения. Способы получения и свойства.
- 11. Кальций и его соединения. Способы получения и свойства.
- 12. Алюминий и его соединения. Способы получения и свойства.
- 13. Хлор и его соединения. Способы получения и свойства.
- 14. Азот и его соединения. Способы получения и свойства.
- 15.Сера и ее соединения. Способы получения и свойства.

Вопрос 2

1. Насыщенные углеводороды (алканы). Их электронное и пространственное строение, способы получения и свойства.

- 2. Этиленовые углеводороды (алкены). Их электронное и пространственное строение, способы получения и свойства.
- 3. Диеновые углеводороды (алкадиены). Их электронное и пространственное строение, способы получения и свойства.
- 4. Алкины. Их электронное и пространственное строение, способы получения и свойства.
- 5. Ароматические углеводороды. Их электронное и пространственное строение, способы получения и свойства.
- 6. Одноатомные спирты. Их строение, способы получения и свойства.
- 7. Многоатомные спирты. Этиленгликоль, глицерин. Их строение, способы получения и свойства.
- 8. Фенол. Его строение, способы получения и свойства.
- 9. Альдегиды. Их строение, способы получения и свойства.
- 10. Карбоновые кислоты. Их строение, способы получения и свойства.
- 11.Сложные эфиры. Их строение, способы получения и свойства.
- 12. Жиры. Их строение и свойства.
- 13. Амины. Их строение, способы получения и свойства.
- 14. Аминокислоты. Их строение, способы получения и свойства.
- 15. Реакции полимеризации и поликонденсации. Примеры полимеров.

Вопрос 3

- 1. Напишите 10 уравнений химических реакций, в которых участвуют только кальций, азот, кислород, водород и продукты их взаимодействия.
- 2. Напишите 10 уравнений химических реакций, в которых участвуют только кальций, фосфор, кислород, водород и продукты их взаимодействия.
- 3. Напишите 10 уравнений химических реакций, в которых участвуют только кальций, сера, кислород, водород и продукты их взаимодействия.
- 4. Напишите 10 уравнений химических реакций, в которых участвуют только кальций, углерод, кислород, водород и продукты их взаимодействия.
- 5. Напишите 10 уравнений химических реакций, в которых участвуют только кальций, кремний, кислород, водород и продукты их взаимодействия.
- 6. Напишите 10 уравнений химических реакций, в которых участвуют только натрий, алюминий, кислород, водород и продукты их взаимодействия.
- 7. Напишите 10 уравнений химических реакций, в которых участвуют только натрий, цинк, кислород, водород и продукты их взаимодействия.
- 8. Напишите 10 уравнений химических реакций, в которых участвуют только натрий, азот, кислород, водород и продукты их взаимодействия.
- 9. Напишите 10 уравнений химических реакций, в которых участвуют только натрий, хлор, кислород, водород и продукты их взаимодействия.
- 10. Напишите 10 уравнений химических реакций, в которых участвуют только кальций, хлор, кислород, водород и продукты их взаимодействия.
- 11. Напишите 10 уравнений химических реакций, в которых участвуют только цинк, серная кислота, гидроксид натрия и продукты их взаимодействия.

- 12. Напишите 10 уравнений химических реакций, в которых участвуют только цинк, азотная кислота, гидроксид натрия и продукты их взаимодействия.
- 13. Напишите 10 уравнений химических реакций, в которых участвуют только железо, серная кислота, гидроксид натрия и продукты их взаимодействия.
- 14. Напишите 10 уравнений химических реакций, в которых участвуют только медь, азотная кислота, гидроксид натрия и продукты их взаимодействия.
- 15. Напишите 10 уравнений химических реакций, в которых участвуют только магний, азотная кислота, гидроксид натрия и продукты их взаимодействия.

Вопрос 4

- 1. Напишите структурные формулы и названия не менее пяти изомеров состава C_5H_{10} . Для *одного* из соответствующих изомеров напишите уравнения реакций с водородом, бромной водой, хлороводородом, водным раствором перманганата калия и водой.
- 2. Напишите структурные формулы и названия не менее пяти изомеров состава С₅H₁₀. Для *одного* из соответствующих изомеров напишите уравнения реакций гидрирования, галогенирования, гидрогалогенирования, окисления и гидратации.
- 3. Напишите структурные формулы и названия не менее пяти изомеров состава С₄H₈. Для *одного* из соответствующих изомеров напишите уравнения реакций с водородом, бромной водой, хлороводородом, водным раствором перманганата калия и водой.
- 4. Напишите структурные формулы и названия не менее пяти изомеров состава С₄H₈. Для *одного* из соответствующих изомеров напишите уравнения реакций гидрирования, галогенирования, гидрогалогенирования, окисления и гидратации.
- 5. Напишите структурные формулы и названия не менее пяти изомеров состава C_5H_8 . Для *одного* из соответствующих изомеров напишите уравнения реакций с водородом, бромной водой, хлороводородом, аммиачным раствором оксида серебра и водой.
- 6. Напишите структурные формулы и названия не менее пяти изомеров состава C_5H_8 . Для *одного* из соответствующих изомеров напишите уравнения реакций с водородом, бромной водой, бромоводородом, аммиачным раствором хлорида меди(I) и водой.
- 7. Напишите структурные формулы и названия не менее пяти изомеров состава C_5H_8 . Для *одного* из соответствующих изомеров напишите уравнения реакций гидрирования, галогенирования, гидрогалогенирования, окисления и гидратации.
- 8. Напишите структурные формулы и названия не менее пяти изомеров состава $C_5H_{12}O$. Для *одного* из соответствующих изомеров напишите уравнения реакций с натрием, уксусной кислотой, оксидом меди(II), подкисленным раствором перманганата калия и бромоводородом.
- 9. Напишите структурные формулы и названия не менее пяти изомеров состава $C_4H_{10}O$. Для *одного* из соответствующих изомеров напишите уравнения реакций с натрием, пропионовой кислотой, оксидом меди(II), подкисленным раствором перманганата калия и бромоводородом.
- 10. Напишите структурные формулы и названия не менее пяти изомеров состава C_4H_8O . Для *одного* из соответствующих изомеров напишите уравнения реакций с водородом, аммиачным раствором оксида серебра, бромной водой, гидроксидом меди(II) и кислородом.
- 11. Напишите структурные формулы и названия не менее пяти изомеров состава C_4H_8O . Для *одного* из соответствующих изомеров напишите уравнения реакций с водородом, натрием, бромной водой, бромоводородом и оксидом меди(II).
- 12. Напишите структурные формулы и названия не менее пяти изомеров состава $C_4H_8O_2$. Для *одного* из соответствующих изомеров напишите уравнения реакций с гидроксидом натрия, гидрокарбонатом натрия, хлором, этиловым спиртом и оксидом меди(II).

- 13. Напишите структурные формулы и названия не менее пяти изомеров состава С₄H₈O₂. Для *одного* из соответствующих изомеров напишите уравнения реакций с гидроксидом калия, карбонатом натрия, хлором, пропиловым спиртом и натрием.
- 14. Напишите структурные формулы и названия изомеров состава $C_3H_7O_2N$. Напишите уравнения реакций одного из соответствующих изомеров с гидроксидом натрия, соляной кислотой, этиловым спиртом и водородом.
- 15. Напишите структурные формулы и названия не менее пяти изомеров состава C₄H₈Cl₂. На основе этих изомеров напишите реакции получения алкана, алкена, циклоалкана, альдегида и кетона.

Вопрос 5

- 1. К 39 мл раствора хлорида бария с массовой долей соли 20 % и плотностью 1,2 г/мл добавили 58,66 г раствора фосфата натрия с концентрацией 0,75 моль/л и плотностью 1,1 г/мл. Определите массу выпавшего осадка и массовые доли веществ в полученном растворе.
- 2. К 105 мл раствора нитрата цинка с массовой долей соли 12 % и плотностью 1,05 г/мл добавили 72 г раствора фосфата аммония с концентрацией 0,9 моль/л и плотностью 1,08 г/мл. Определите массу выпавшего осадка и массовые доли веществ в полученном растворе.
- 3. К 95,36 мл раствора хлорида алюминия с массовой долей соли 15 % и плотностью 1,12 г/мл добавили 192 г раствора гидроксида натрия с концентрацией 2,5 моль/л и плотностью 1,2 г/мл. Определите массу выпавшего осадка и массовые доли веществ в полученном растворе.
- 4. К 28,08 мл раствора нитрата ртути с массовой долей соли 25 % и плотностью 1,25 г/мл добавили 19,67 г раствора фосфата калия с концентрацией 1,2 моль/л и плотностью 1,18 г/мл. Определите массу выпавшего осадка и массовые доли веществ в полученном растворе.
- 5. К 250 мл раствора сульфата хрома (III) с массовой долей соли 14 % и плотностью 1,12 г/мл добавили 222 г раствора силиката натрия с концентрацией 0,75 моль/л и плотностью 1,11 г/мл. Определите массу выпавшего осадка и массовые доли веществ в полученном растворе.
- 6. В 60 мл раствора с плотностью 1,182 г/мл, содержащего нитрат свинца (II) и нитрат меди (II) с массовыми долями 15 и 2,65 % соответственно, насыпали 5,6 г железных опилок. Через некоторое время раствор отфильтровали. Масса твердых веществ составила 8,7 г. Определите массовые доли веществ в полученном растворе.
- 7. К 120 г раствора сульфата алюминия с плотностью 1,25 г/мл и молярной концентрацией соли 1,5 моль/л добавили 189,1 мл раствора хлорида бария с массовой долей соли 0,2 и плотностью 1,1 г/мл. Определите массовые доли веществ в образовавшемся растворе.
- 8. К 220 г раствора ортофосфата натрия с плотностью 1,1 г/мл и молярной концентрацией соли 1 моль/л добавили 212,5 мл раствора нитрата серебра с массовой долей соли 40 % и плотностью 1,4 г/мл. Определите массовые доли веществ в образовавшемся растворе.
- 9. В 192 мл раствора нитрата свинца (II) с массовой долей соли 30 % и плотностью 1,15 г/мл опустили цинковую пластинку массой 100 г. Через некоторое время пластинку вынули, промыли водой, высушили и взвесили. Ее масса оказалась равной 121,3 г. Определите массовые доли веществ в оставшемся растворе.
- 10. 40 г порошка магния поместили в раствор сульфата цинка массой 596 г. Через некоторое время металлический порошок отделили от раствора, высушили и взвесили. Масса порошка оказалась равной 56 г Определите массовую долю сульфата магния в растворе, оставшемся после отделения металлического порошка.

- 11. 61,2 мл раствора гидроксида калия с массовой долей щелочи 20% и плотностью 1,19 г/мл смешали с 250 мл раствора нитрата цинка, в котором концентрация нитрат-ионов составляла 0,8 моль/л. Полученную смесь упарили и прокалили. Определите массы веществ в остатке после прокаливания.
- 12. . 8,85 г сплава магния с алюминием растворили в 84,75 мл раствора соляной кислоты с массовой долей хлороводорода 36,5% и плотностью 1,18 г/мл, в результате чего выделилось 9,52 л газа (н.у.). К полученному раствору добавили 486 мл раствора гидроксида калия с массовой долей щелочи 11% и плотностью 1,1 г/мл. Выпавший осадок удалили. Определите массовые доли веществ в конечном растворе. (Растворимостью гидроксида магния в воде пренебречь).
- 13. 250 мл смеси азота, водорода и метана смешали с 500 мл кислорода и взорвали. После приведения к нормальным условиям объем газовой смеси составил 387,5 мл, а после пропускания ее через избыток раствора щелочи он уменьшился до 262,5 мл. Определите состав исходной газовой смеси в % по объему.
- 14. 100 мл смеси азота, метана и метиламина при нормальных условиях смешали с 300 мл кислорода и подожгли. После приведения к н.у. объем газовой смеси составил 232,5 мл, а после ее пропускания через избыток раствора щелочи он уменьшился до 152,5 мл. Определите объемные доли газов в исходной смеси.
- 15. В 60 мл раствора с плотностью 1,182 г/мл, содержащего нитрат свинца (II) и нитрат меди (II) с массовыми долями 15 и 2,65 % соответственно, насыпали 5,6 г железных опилок. Через некоторое время раствор отфильтровали. Масса твердых веществ составила 8,7 г. Определите массовые доли веществ в полученном растворе.

V. Показатели и критерии результата собеседования, шкала и процедура оценивания

Результаты сдачи собеседования показывают степень (уровень) усвоения теоретического учебного материала по дисциплине и уровень сформированности умений и навыков.

Критерии, определяющие степень (уровень) усвоения теоретического учебного материала по дисциплине на собеседовании:

- правильность ответа на вопрос;
- объем (полнота) теоретических знаний в рамках программного материала. Критерии, определяющие уровень сформированности умений и навыков по дисциплине на собеседовании:
- правильность реализации алгоритма решения практической задачи;
- правильность интерпретации полученных результатов;
- умение сделать выводы из полученных данных.
 Критерии оценки вопросов собеседования в балах приведены ниже.

1 вопрос

Абитуриент должен продемонстрировать знание теоретического материала, подкрепив это написанием соответствующих химических реакций.

Теоретический материал изложен. Отсутствуют реакции – 5 баллов

Теоретический материал изложен. Приведено 50 % реакций – 10 баллов

Теоретический материал изложен. Приведено 70 % реакций – 14 баллов

Теоретический материал изложен. Приведено 80 % реакций – 16 баллов

Теоретический материал изложен. Приведено 90 % реакций – 18 баллов

Теоретический материал изложен. Приведено 100 % реакций – 20 баллов

2 вопрос

Абитуриент должен продемонстрировать знание теоретического материала, подкрепив это написанием соответствующих химических реакций.

Теоретический материал изложен. Отсутствуют реакции – 5 баллов

Теоретический материал изложен. Приведено 50 % реакций – 10 баллов

Теоретический материал изложен. Приведено 70 % реакций – 14 баллов

Теоретический материал изложен. Приведено 80 % реакций – 16 баллов

Теоретический материал изложен. Приведено 90 % реакций – 18 баллов

Теоретический материал изложен. Приведено 100 % реакций – 20 баллов

3 вопрос

За каждую верно написанную реакцию с указанием условий ее проведения по 2 балла.

При отсутствии условий проведения реакций минус 2 балла от общей суммы баллов.

4 вопрос

Написаны и названы пять изомеров – 10 баллов.

За каждую верно написанную реакцию по 2 балла.

5 вопрос

Написаны уравнения химических реакций – 5 баллов

Рассчитаны количества реагентов – 5 баллов

Проведен расчет по уравнениям реакций – 5 баллов

Получен ответ на вопрос задачи – 5 баллов.

При наличии арифметической ошибки и верном рассуждении – минус 3 балла.

Общая максимальная сумма вступительного собеседования составляет 100 баллов. Сумма баллов не переводится в пятибалльную шкалу.

VI. Рекомендуемая литература

Для подготовки к собеседованию можно использовать школьные учебники по химии (желательно профильного уровня) одних авторов, например

- 1. 100 баллов по химии. Полный курс для поступающих в ВУЗы. Под редакцией профессора РАН, д.х.н. Негребецкого В.В., Москва, Лаборатория знаний, 2023.
- 2. 100 баллов по химии. Тесты для подготовки к экзамену. Под редакцией профессора РАН, д.х.н. Негребецкого В.В., Москва, Лаборатория знаний, 2023.
- 3. 100 баллов по химии. Теория и практика, задачи и упражнения. Под редакцией профессора РАН, д.х.н. Негребецкого В.В., Москва, Лаборатория знаний, 2023.
- 4. 100 баллов по химии. Учимся решать задачи: от простых до самых сложных. Под редакцией профессора РАН, д.х.н. Негребецкого В.В., Москва, Лаборатория знаний, 2022.
- 5. ЕГЭ-2023. Химия. Типовые экзаменационные варианты. Под редакцией Добротина Д.Ю.
- 6. Габриелян О.С., Остроумов И.Г., Сладков С.А., Химия (базовый уровень), АО Издательство Просвещение.
- 7. Еремин В.В., Кузьменко Н.Е., Теренин В.И. и др./ Под ред. Лунина В.В., Химия (базовый уровень), ООО ДРОФА.
- 8. Еремин В.В., Кузьменко Н.Е., Теренин В.И. и др./Под ред. Лунина В.В., Химия (углубленный уровень), ООО ДРОФА.
- 9. Пузаков С.А., Машнина Н.В., Попков В.А., Химия (углубленный уровень), АО Издательство Просвещение.
- 10. Рудзитис Г.Е., Фельдман Ф.Г., Химия (базовый уровень), АО Издательство Просвещение.